Lučenje, uobičajeno i sekrecija, je kretanje materijala od jedne tačke do druge, kao što je izlučena hemijska supstanca iz ćelija ili žlijezda. Nasuprot tome, izlučivanje je uklanjanje određenih supstanci ili otpadnih proizvoda iz ćelija ili organizma. Klasični mehanizam ćelijske sekrecije je preko sekretornih portala na plazmamembrani zvanih porosomi.[1] Porosomi su trajne čašaste lipoproteinske strukture ugrađene u ćelijsku membranu, gdje se sekrecijske vezikule prolazno vežu i spajaju kako bi oslobodili unutarvezikulski sadržaj iz ćelije.
U Golgijevom aparatu, glikozilacija proteina je modifikovana i mogu se desiti dalje posttranslacijske modifikacije, uključujući cijepanje i funkcionalizaciju. Proteini se zatim pomiču u sekrecijske vezikule koje putuju duž citoskeleta do ruba ćelije. U sekrecijskim vezikulama može doći do više modifikacija (naprimjer, u sekrecijskim vezikulama insulin se odvaja od proinsulina).
Stroga biohemijska kontrola održava se nad ovom sekvencom, upotrebom gradijenta pH: pH citosola je 7,4, pH ER je 7,0, a cis-Golgi ima pH 6,5. Sekrecijske vezikule imaju pH u rasponu između 5,0 i 6,0; neke sekrecijske vezikule evoluiraju u lizosome, koji imaju pH 4,8.
Neklasična sekrecija
Postoje mnogi proteini poput FGF1 (aFGF), FGF2 (bFGF), interleukin-1 (IL1) itd. koji nemaju signalnu sekvencu. Oni ne koriste klasični ER-Golgijev put. Luče različitim neklasičnim putevima.
Opisana su najmanje četiri neklasična (nekonvencijska) puta sekrecije proteina.[3] Uključuju:
direktna translokacija proteina kroz plazmamembranu vjerovatno preko membranskog transporta proteina
oslobađanje putem egzosoma koji potiču iz multivezikulskih tijela
Osim toga, proteini se mogu osloboditi iz ćelija mehaničkim ili fiziološkim ranjavanjem [4] i putem neletalne, prolazne onkotske pore u plazmamembrani izazvane pranjem ćelija medijem bez seruma ili puferima.[5]
Sekret nije svojstven samo eukariotima – prisutan je i u bakterijama i arhejama. Tipovi transportera zvani ATP-vezujuća kaseta (ABC) su zajednički za tri domena života. Neki lučeni proteini se translociraju kroz citoplazmatsku membranu pomoću SecYEGtranslokona, jednog od dva sistema translokacije, koji zahtijeva prisustvo N-terminalnogsignalnog peptida na izlučenom proteinu. Drugi se translociraju preko citoplazmatske membrane putem translokacije blizanaca (Tat). Gram-negativne bakterije imaju dvije membrane, što čini sekreciju topološki složenijom. Postoji najmanje šest specijalizovanih sistema sekrecije kod gram-negativnih bakterija. Mnogi izlučeni proteini su posebno važni u patogenezi bakterija.[6]
Tipovi sekrecujskih sistema (T1SS ili TOSS)
Sekrecija tipa I je sistem lučenja ovisan o šaperonu koji koristi klastere gena Hly i Tol. Proces počinje kada HlyA prepozna vodeću sekvencu na proteinu koji se luči i veže HlyB na membrani. Ova sekvenca signala je izuzetno specifična za ABC transporter. HlyAB kompleks stimulira HlyD koji počinje da se odmotava i stiže do vanjske membrane gdje TolC prepoznaje terminalnu molekulu ili signal na HlyD. HlyD regrutuje TolC u unutrašnju membranu, a HlyA se izlučuje izvan vanjske membrane preko dugog tunelskog proteinskog kanala.
Sistem sekrecije tipa I prenosi različite molekule, od iona, lijekova, do proteina različitih veličina (20 – 900 kDa). Sekretirane molekule variraju u veličini od malog peptidnog kolicina V u Escherichia coli, (10 kDa) do Pseudomonas fluorescens ćelijskog adhezionog proteina LapA od 520 kDa.[7] Najbolje okarakterisani su RTX toksin i lipaze. Sekrecija tipa I također je uključena u izvoz neproteinskih supstrata poput cikličnih β-glukana i polisaharida.
Proteini koji se luče kroz sistem tipa II ili glavnu terminalnu granu općeg sekretornog puta, zavise od Sec ili Tat sistema za početni transport u periplazmu. Tamo prolaze kroz vanjsku membranu preko multimernog (12-14 podjedinica) kompleksa proteinasekretina koji formiraju pore. Pored proteina sekretina, 10–15 drugih proteina unutrašnje i vanjske membrane čine kompletan aparat za izlučivanje, od kojih mnogi imaju još nepoznatu funkciju. Gram-negativni pilusi tip IV koriste modificiranu verziju sistema tipa II za svoju biogenezu, a u nekim slučajevima određeni proteini dijele se između kompleksa pilusa i sistema tipa II unutar jedne bakterijske vrste .
Homologan je baznom tijelu u bakterijskim flagelama. To je poput molekulske šprice kroz koju prolazi bakterija (npr. određene vrste Salmonella, Shigella, Yersinia, Vibrio ) koja može ubrizgati proteine u eukariotske ćelije. Niska koncentracija Ca2+ u citosolu otvara ulaz koji reguliše T3SS. Jedan takav mehanizam za otkrivanje niske koncentracije kalcija ilustrovan je antigenom lcrV (Low Calcium Response) u Yersinia pestis, koji se koristi za otkrivanje niske koncentracije kalcija i izaziva vezivanje T3SS. Hrp sistem u biljnim patogenima ubrizgava harpine i proteine efektora patogena kroz slične mehanizme u biljke. Ovaj sistem sekrecije je prvi put otkriven u Yersinia pestis i pokazao je da se toksini mogu ubrizgati direktno iz bakterijske citoplazme u citoplazmu ćelija domaćina, a ne da se jednostavno izluče u vanćelijski medij.[8]
Proteinski članovi ove porodice su komponente sistema sekrecije tipa IV. Oni posreduju unutarćelijski prenos makromolekula preko mehanizma koji je od predaka povezan sa mehanizmima bakterijske konjugacije.[12][13]
Funkcija
Ukratko, sistem sekrecije tipa IV (T4SS) je opći mehanizam kojim bakterijske ćelije luče ili preuzimaju makromolekule. Njihov precizan mehanizam ostaje nepoznat. T4SS je kodiran na Gram-negativne konjugativne elemente u bakterija. T4SS su kompleksi koji pokrivaju ćelijsku membranu ili drugim riječima 11–13 jedarnih proteina koji formiraju kanal kroz koji DNK i proteini mogu da putuju od citoplazme ćelije donora do citoplazme ćelije primatelja. Pored toga, T4SS također luči proteine faktora virulencije direktno u ćelije domaćina, kao i preuzima DNK iz medija tokom prirodne transformacije, što pokazuje svestranost ovog aparata za makromolekulsku sekreciju.[14]
Struktura
Kao što je prikazano na gornjoj slici, TraC se posebno sastoji od snopa s tri spirale i labavog globulastog dodatka.[13]
Interakcije
T4SS ima dva efektorska proteina: prvo, ATS-1, što je skraćenica za supstrat 1 translocirana anaplazma, i drugo AnkA, što je skraćenica za protein A koji sadrži domen ponavljanja ankirina. Dodatno, T4SS spojni proteini su VirD4, koji se vezuju za VirE2.[15]
Naziva se i autotransporterski sistem,[16] sekrecija tipa V uključuje korištenje Sec sistema za prolazak kroz unutrašnju membranu. Proteini koji koriste ovaj put imaju sposobnost da formiraju beta-cijev sa svojim C-terminalom koji se ubacuje u vanjsku membranu, omogućavajući ostatku peptida (domen putnika) da stigne do vanjske strane ćelije. Često se autotransporteri cijepaju, ostavljajući domen beta cijevi u vanjskoj membrani i oslobađajući domen putnika. Neki istraživači vjeruju da su ostaci autotransportera doveli do nastanka porina koji formiraju slične strukture beta-barela. Uobičajeni primjer autotransportera koji koristi ovaj sistem lučenja je trimerni autotransporterski adhezin.[17]
Sistem sekrecije tipa VI prvobitno je identifikovala grupa Johna Mekalanosa, 2006., na Harvard Medical School (Boston, SAD) u dva bakterijska patogena, Vibrio cholerae i Pseudomonas aeruginosa.[18][19] Identifikovani su kada su mutacije u genima Hcp i VrgG u Vibrio cholerae dovele do smanjene virulencije i patogenosti. Od tada, sistemi lučenja tipa VI pronađeni su u četvrtini svih proteobakterijskih genoma, uključujući životinjske, biljne, ljudske patogene, kao i bakterije u tlu, okolišu ili moru.[20][21] Dok se većina ranih studija sekrecije tipa VI fokusirala na njegovu ulogu u patogenezi viših organizama, novije studije sugerirale su širu fiziološku ulogu u odbrani od jednostavnih eukariotskihpredatora i njenu ulogu u međubakterijskim interakcijama.[22][23]Klasteri gena sistema sekrecije tipa VI sadrže od 15 do više od 20 gena, od kojih su dva, Hcp i VgrG, pokazali da su skoro univerzalno lučeni supstrati sistema. Strukturna analiza ovih i drugih proteina u ovom sistemu zapanjujuće liči na repni šiljak T4-faga, a smatra se da aktivnost sistema funkcionalno podseća na infekciju fagom.[24]
Oslobađanje vanjske vezikulske membrane
Pored upotrebe višeproteinskih kompleksa navedenih gore, Gram-negativne bakterije imsaju još jedan način oslobađanja materijala: stvaranje bakterijskih vezikula vanjske membrane.[25] Dijelovi vanjske membrane se odvajaju, formirajući nano-sferne strukture napravljene od lipidnog dvosloja bogatog lipopolisaharidima koji pokrivaju periplazmatske materijale i koriste se za promet membranskih vezikula za manipulaciju okolinom ili invaziju na interfejs domaćin-patogen. Utvrđeno je da vezikule brojnih bakterijskih vrsta sadrže faktore virulencije, a neke imaju imunomodulacijsko djelovanje, a neke mogu direktno prianjati i opijati ćelije domaćina. Oslobađanje vezikula je pokazano kao opći odgovor na stresne uvjete, čini se da je proces punjenja proteinskog tereta selektivan.[26]
^Nickel W, Seedorf M (2008). "Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells". Annual Review of Cell and Developmental Biology. 24: 287–308. doi:10.1146/annurev.cellbio.24.110707.175320. PMID18590485.
^Thanassi DG, Stathopoulos C, Karkal A, Li H (2005). "Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of gram-negative bacteria (review)". Molecular Membrane Biology. 22 (1–2): 63–72. doi:10.1080/09687860500063290. PMID16092525. S2CID2708575.
^Gerlach RG, Hensel M (oktobar 2007). "Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens". International Journal of Medical Microbiology. 297 (6): 401–15. doi:10.1016/j.ijmm.2007.03.017. PMID17482513.
^Coulthurst SJ (2013). "The Type VI secretion system - a widespread and versatile cell targeting system". Research in Microbiology. 164 (6): 640–54. doi:10.1016/j.resmic.2013.03.017. PMID23542428.