The Yoneda lemma suggests that instead of studying the locally small category , one should study the category of all functors of into (the category of sets with functions as morphisms). is a category we think we understand well, and a functor of into can be seen as a "representation" of in terms of known structures. The original category is contained in this functor category, but new objects appear in the functor category, which were absent and "hidden" in . Treating these new objects just like the old ones often unifies and simplifies the theory.
This approach is akin to (and in fact generalizes) the common method of studying a ring by investigating the modules over that ring. The ring takes the place of the category , and the category of modules over the ring is a category of functors defined on .
The (covariant) hom-functor sends to the set of morphisms and sends a morphism (where ) to the morphism (composition with on the left) that sends a morphism in to the morphism in . That is,
Yoneda's lemma says that:
Lemma(Yoneda) — Let be a functor from a locally small category to . Then for each object of , the natural transformations from to are in one-to-one correspondence with the elements of . That is,
Moreover, this isomorphism is natural in and when both sides are regarded as functors from to .
Here the notation denotes the category of functors from to .
Given a natural transformation from to , the corresponding element of is ;[a] and given an element of , the corresponding natural transformation is given by which assigns to a morphism a value of .
Contravariant version
There is a contravariant version of Yoneda's lemma,[2] which concerns contravariant functors from to . This version involves the contravariant hom-functor
which sends to the hom-set . Given an arbitrary contravariant functor from to , Yoneda's lemma asserts that
Naturality
The bijections provided in the (covariant) Yoneda lemma (for each and ) are the components of a natural isomorphism between two certain functors from to .[3]: 61 One of the two functors is the evaluation functor
This is enough to determine the other functor since we know what the natural isomorphism is. Under the second functor
the image of a pair is the map
that sends a natural transformation to the natural transformation , whose components are
Naming conventions
The use of for the covariant hom-functor and for the contravariant hom-functor is not completely standard. Many texts and articles either use the opposite convention or completely unrelated symbols for these two functors. However, most modern algebraic geometry texts starting with Alexander Grothendieck's foundational EGA use the convention in this article.[b]
The mnemonic "falling into something" can be helpful in remembering that is the covariant hom-functor. When the letter is falling (i.e. a subscript), assigns to an object the morphisms from into.
Proof
Since is a natural transformation, we have the following commutative diagram:
This diagram shows that the natural transformation is completely determined by since for each morphism one has
Moreover, any element defines a natural transformation in this way. The proof in the contravariant case is completely analogous.[1]
The Yoneda embedding
An important special case of Yoneda's lemma is when the functor from to is another hom-functor . In this case, the covariant version of Yoneda's lemma states that
That is, natural transformations between hom-functors are in one-to-one correspondence with morphisms (in the reverse direction) between the associated objects. Given a morphism the associated natural transformation is denoted .
Mapping each object in to its associated hom-functor and each morphism to the corresponding natural transformation determines a contravariant functor from to , the functor category of all (covariant) functors from to . One can interpret as a covariant functor:
The meaning of Yoneda's lemma in this setting is that the functor is fully faithful, and therefore gives an embedding of in the category of functors to . The collection of all functors is a subcategory of . Therefore, Yoneda embedding implies that the category is isomorphic to the category .
The contravariant version of Yoneda's lemma states that
Therefore, gives rise to a covariant functor from to the category of contravariant functors to :
Yoneda's lemma then states that any locally small category can be embedded in the category of contravariant functors from to via . This is called the Yoneda embedding.
The Yoneda embedding is sometimes denoted by よ, the hiraganaYo.[4]
The Yoneda embedding essentially states that for every (locally small) category, objects in that category can be represented by presheaves, in a full and faithful manner. That is,
for a presheaf P. Many common categories are, in fact, categories of pre-sheaves, and on closer inspection, prove to be categories of sheaves, and as such examples are commonly topological in nature, they can be seen to be topoi in general. The Yoneda lemma provides a point of leverage by which the topological structure of a category can be studied and understood.
A preadditive category is a category where the morphism sets form abelian groups and the composition of morphisms is bilinear; examples are categories of abelian groups or modules. In a preadditive category, there is both a "multiplication" and an "addition" of morphisms, which is why preadditive categories are viewed as generalizations of rings. Rings are preadditive categories with one object.
The Yoneda lemma remains true for preadditive categories if we choose as our extension the category of additive contravariant functors from the original category into the category of abelian groups; these are functors which are compatible with the addition of morphisms and should be thought of as forming a module category over the original category. The Yoneda lemma then yields the natural procedure to enlarge a preadditive category so that the enlarged version remains preadditive — in fact, the enlarged version is an abelian category, a much more powerful condition. In the case of a ring , the extended category is the category of all right modules over , and the statement of the Yoneda lemma reduces to the well-known isomorphism
for all right modules over .
Relationship to Cayley's theorem
As stated above, the Yoneda lemma may be considered as a vast generalization of Cayley's theorem from group theory. To see this, let be a category with a single object such that every morphism is an isomorphism (i.e. a groupoid with one object). Then forms a group under the operation of composition, and any group can be realized as a category in this way.
In this context, a covariant functor consists of a set and a group homomorphism, where is the group of permutations of ; in other words, is a G-set. A natural transformation between such functors is the same thing as an equivariant map between -sets: a set function with the property that for all in and in . (On the left side of this equation, the denotes the action of on , and on the right side the action on .)
Now the covariant hom-functor corresponds to the action of on itself by left-multiplication (the contravariant version corresponds to right-multiplication). The Yoneda lemma with states that
,
that is, the equivariant maps from this -set to itself are in bijection with . But it is easy to see that (1) these maps form a group under composition, which is a subgroup of , and (2) the function which gives the bijection is a group homomorphism. (Going in the reverse direction, it associates to every in the equivariant map of right-multiplication by .) Thus is isomorphic to a subgroup of , which is the statement of Cayley's theorem.
History
Yoshiki Kinoshita stated in 1996 that the term "Yoneda lemma" was coined by Saunders Mac Lane following an interview he had with Yoneda in the Gare du Nord station.[7][8]
^Recall that so the last expression is well-defined and sends a morphism from to , to an element in .
^A notable exception to modern algebraic geometry texts following the conventions of this article is Commutative algebra with a view toward algebraic geometry / David Eisenbud (1995), which uses to mean the covariant hom-functor. However, the later book The geometry of schemes / David Eisenbud, Joe Harris (1998) reverses this and uses to mean the contravariant hom-functor.