William Kennedy Smith (Australian politician)
|
Read other articles:
Pour les articles homonymes, voir Vierge et Virgo. Vierge Vue de la constellation. Désignation Nom latin Virgo Génitif Virginis Abréviation Vir Observation (Époque J2000.0) Ascension droite Entre 172,75° et 226,25° Déclinaison Entre -22° et 14° Taille observable 1 294 deg2 (2e) Visibilité Entre 80° N et 80° S Méridien 25 mai, 21h00 Étoiles Brillantes (m≤3,0) 3 (α, γ, ε) À l’œil nu 171 Bayer / Flamsteed 95 Proches (d≤16 al) 2 La plus brillante α Virgin...
United Kingdom legislationCourts and Legal Services Act 1990Parliament of the United KingdomLong titleAn Act to make provision with respect to the procedure in, and allocation of business between, the High Court and other courts; to make provision with respect to legal services; to establish a body to be known as the Lord Chancellor's Advisory Committee on Legal Education and Conduct and a body to be known as the Authorised Conveyancing Practitioners Board; to provide for the appointment of ...
British Indian spy This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2017) (Learn how and when to remove this template message) Kirpal Singh was a soldier of the British Indian Army who is best known for his role in passing on to the Punjab Criminal Investigation Department (CID) the intelligence on the date of the Ghadar Conspiracy in February 1915 d...
Marc Hornschuh Marc Hornschuh di FC St. Pauli, 2017Informasi pribadiNama lengkap Marc HornschuhTanggal lahir 2 Maret 1991 (umur 33)Tempat lahir Dortmund, JermanTinggi 187 m (613 ft 6 in)Posisi bermain Bek tengah / gelandang bertahanInformasi klubKlub saat ini Borussia Dortmund IINomor 3Karier junior1994–2002 DJK TuS Körne2002–2009 Borussia DortmundKarier senior*Tahun Tim Tampil (Gol)2009– Borussia Dortmund II 101 (4)2009– Borussia Dortmund 0 (0)2012 → Ingolstad...
Trade of people in Costa Rica Costa Rica Map Costa Rica is a source, transit, and destination country for goods and products, a great location for trade in the seas. Costa Rica is surrounded by the Pacific Ocean and the Caribbean Sea making it a source of imports and exports.[1] Costa Rica is approximately 19,653 square miles of land, making it smaller than West Virginia.[2] To a lesser but increasing extent, Costa Rica is a source, transit, and destination country for men, wo...
Benny Kabur Harman Anggota Dewan Perwakilan Rakyat Republik IndonesiaPetahanaMulai menjabat 1 Oktober 2019Masa jabatan1 Oktober 2009 – 5 Februari 2018PenggantiYosef B. Badeoda[1]Mayoritas60.288 suara[2]Masa jabatan1 Oktober 2004 – 2008PenggantiBruno Kaka Wawo[3] Informasi pribadiLahirHarman Benediktus Kabur19 September 1962 (umur 61)Satar Mese, Manggarai, Nusa Tenggara Timur, IndonesiaPartai politik Partai Keadilan dan Persatuan Indonesia...
Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Calcio Schio 1905. Associazione Calcio LanerossiStagione 1940-1941Sport calcio SquadraCalcio Schio 1905 Allenatore József Zillzy Presidente Eugenio Capra Serie C3º posto nel girone eliminatorio A 1939-1940 1941-1942 Si invita a seguire il modello di voce Questa voce...
Gaetano Auteri Auteri sulla panchina del Matera nel 2016 Nazionalità Italia Calcio Ruolo Allenatore (ex attaccante) Squadra Benevento Termine carriera 1992 - giocatore CarrieraSquadre di club1 1979-1981 Siracusa37 (4)1981-1984 Varese88 (20)1984-1986 Genoa29 (2)1986-1988 Monza64 (13)1988-1990 Palermo52 (12)1990-1991 Licata22 (4)1991-1992 Leonzio12 (3)Carriera da allenatore 1994-1995 Atletico CataniaPortieri1995-1996 Ragusa1998-2001...
МифологияРитуально-мифологическийкомплекс Система ценностей Сакральное Миф Мономиф Теория основного мифа Ритуал Обряд Праздник Жречество Мифологическое сознание Магическое мышление Низшая мифология Модель мира Цикличность Сотворение мира Мировое яйцо Мифическое �...
طواف العالم للدراجات 2015 تفاصيل السباقسلسلة5. طواف العالم للدراجاتمنافسةطواف العالم للدراجاتمراحل27التاريخ2015المسافات23٬952٫9 كمالمنصةالفائز أليخاندرو بالبيردي (موفيستار)الثاني خواكيم رودريغيث (كاتيوشا)الثالث نيرو كوينتانا (موفيستار) ▶20142016◀ توثيق طواف العالم للدراج...
2005 film based on the video game series directed by Andreaz Johnson This article is about the 2005 film. For other uses, see Doom (disambiguation). DoomTheatrical release posterDirected byAndrzej BartkowiakScreenplay by David Callaham[1] Wesley Strick[1] Story byDavid Callaham[1]Based onDoomby id SoftwareProduced by John Wells Lorenzo di Bonaventura Starring Karl Urban Rosamund Pike Razaaq Adoti Dwayne Johnson CinematographyTony Pierce-RobertsEdited byDerek BrechinMus...
土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...
Shopping mall in the Philippines SM City San MateoThe facade of SM City San Mateo in 2024LocationGen. Luna Avenue, Brgy. Ampid 1, San Mateo, Rizal, PhilippinesOpening dateMay 15, 2015; 9 years ago (2015-05-15)DeveloperSM Prime HoldingsManagementSM Prime HoldingsOwnerHenry Sy, Sr.No. of stores and services180No. of anchor tenants10Total retail floor area80,043 m2 (861,580 sq ft)[1]No. of floors4 (Main Mall Area)6 (Car Park)Parking430[2]Public tr...
City in Lorestan province, Iran For the administrative division of Lorestan province, see Aligudarz County. City in Lorestan, IranAligudarz Persian: اليگودرزCityCentral Square of AligudarzAligudarzCoordinates: 33°24′09″N 49°41′25″E / 33.40250°N 49.69028°E / 33.40250; 49.69028[1]CountryIranProvinceLorestanCountyAligudarzDistrictCentralPopulation (2016)[2] • Total89,268Time zoneUTC+3:30 (IRST)ClimateCsa Aligudarz (Pers...
Шрифт «Ротунда» Gebrochene Schriften Роту́нда (итал. rotonda — круглая) — итальянский вариант готического письма (полуготический шрифт), появившийся в XII веке. Отличается округлённостью и отсутствием надломов. См. также Шрифт Готическое письмо Примечания Ссылки http://fonts.ru/help/ter...
Cistercian monastery in Cumbria, UK Holme Cultram AbbeyHolmcultram Abbey 2017Monastery informationFull nameHolmcultram AbbeyOrderCistercianEstablished1150Disestablished1538Diocese CarlisleSiteLocationAbbeytown, CumbriaVisible remainsNave; now a parish churchPublic accessYes Holmcultram Abbey (alternatively Holm Cultram Abbey or Holme Cultram Abbey) was a Cistercian monastery in what is now the village of Abbeytown in Cumbria, United Kingdom. Founded in 1150, the abbey was suppressed in 1538 d...
Roosevelt Skerrit Perdana Menteri DominikaMasa jabatan8 Januari 2004 – SekarangPresidenNicholas LiverpoolPendahuluOsborne Riviere (Pejabat)PenggantiSedang MenjabatAnggota Parlemendapil Vieille CaseMasa jabatan31 Januari 2000 – SekarangPendahuluVernice BellonyPenggantiSedang MenjabatMayoritas684 (50.66%) Informasi pribadiLahir8 Juni 1972 (umur 52)Roseau, Dominika[1]Partai politikPartai BuruhAlma materNew Mexico State UniversityUniversitas MississippiSitus web...
Austrian mathematician (1942–2023) Martin AignerAigner in 2004Born(1942-02-28)28 February 1942Linz, Reichsgau Oberdonau, GermanyDied11 October 2023(2023-10-11) (aged 81)Berlin, GermanyNationalityAustrianAlma materUniversity of ViennaOccupationMathematicianEmployerFreie Universität Berlin Martin Aigner (28 February 1942 – 11 October 2023) was an Austrian mathematician and professor at Freie Universität Berlin from 1974 with interests in combinatorial mathematics and graph theor...
هذه المقالة عن إجرائية التعمية. لمعانٍ أخرى، طالع تعمية (توضيح). تعميةمعلومات عامةصنف فرعي من ترميزحسابcryptographic data processing (en) جزء من تعمية[1] الاستعمال القائمة ... حماية البيانات تجسس مكافحة التجسس مشاكس الظلام Internet censorship circumvention (en) إدارة الحقوق الرقمية مصادقة سلا...
Theorem on Hamiltonian graphs A 2-vertex-connected graph, its square, and a Hamiltonian cycle in the square In graph theory, a branch of mathematics, Fleischner's theorem gives a sufficient condition for a graph to contain a Hamiltonian cycle. It states that, if G {\displaystyle G} is a 2-vertex-connected graph, then the square of G {\displaystyle G} is Hamiltonian. It is named after Herbert Fleischner, who published its proof in 1974. Definitions and statement An undirected graph G {\display...