Weil restriction

In mathematics, restriction of scalars (also known as "Weil restriction") is a functor which, for any finite extension of fields L/k and any algebraic variety X over L, produces another variety ResL/kX, defined over k. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields.

Definition

Let L/k be a finite extension of fields, and X a variety defined over L. The functor from k-schemesop to sets is defined by

(In particular, the k-rational points of are the L-rational points of X.) The variety that represents this functor is called the restriction of scalars, and is unique up to unique isomorphism if it exists.

From the standpoint of sheaves of sets, restriction of scalars is just a pushforward along the morphism and is right adjoint to fiber product of schemes, so the above definition can be rephrased in much more generality. In particular, one can replace the extension of fields by any morphism of ringed topoi, and the hypotheses on X can be weakened to e.g. stacks. This comes at the cost of having less control over the behavior of the restriction of scalars.

Alternative definition

Let be a morphism of schemes. For a -scheme , if the contravariant functor

is representable, then we call the corresponding -scheme, which we also denote with , the Weil restriction of with respect to .[1]

Where denotes the dual of the category of schemes over a fixed scheme .

Properties

For any finite extension of fields, the restriction of scalars takes quasiprojective varieties to quasiprojective varieties. The dimension of the resulting variety is multiplied by the degree of the extension.

Under appropriate hypotheses (e.g., flat, proper, finitely presented), any morphism of algebraic spaces yields a restriction of scalars functor that takes algebraic stacks to algebraic stacks, preserving properties such as Artin, Deligne-Mumford, and representability.

Examples and applications

Simple examples are the following:

  1. Let L be a finite extension of k of degree s. Then and is an s-dimensional affine space over Spec k.
  2. If X is an affine L-variety, defined by we can write as Spec , where () are new variables, and () are polynomials in given by taking a k-basis of L and setting and .

If a scheme is a group scheme then any Weil restriction of it will be as well. This is frequently used in number theory, for instance:

  1. The torus where denotes the multiplicative group, plays a significant role in Hodge theory, since the Tannakian category of real Hodge structures is equivalent to the category of representations of The real points have a Lie group structure isomorphic to . See Mumford–Tate group.
  2. The Weil restriction of a (commutative) group variety is again a (commutative) group variety of dimension if L is separable over k.
  3. Restriction of scalars on abelian varieties (e.g. elliptic curves) yields abelian varieties, if L is separable over k. James Milne used this to reduce the Birch and Swinnerton-Dyer conjecture for abelian varieties over all number fields to the same conjecture over the rationals.
  4. In elliptic curve cryptography, the Weil descent attack uses the Weil restriction to transform a discrete logarithm problem on an elliptic curve over a finite extension field L/K, into a discrete log problem on the Jacobian variety of a hyperelliptic curve over the base field K, that is potentially easier to solve because of K's smaller size.

Weil restrictions vs. Greenberg transforms

Restriction of scalars is similar to the Greenberg transform, but does not generalize it, since the ring of Witt vectors on a commutative algebra A is not in general an A-algebra.

References

  1. ^ Bosch, Siegfried; Lütkebohmert, Werner; Raynaud, Michel (1990). Néron models. Berlin: Springer-Verlag. p. 191.

The original reference is Section 1.3 of Weil's 1959-1960 Lectures, published as:

  • Andre Weil. "Adeles and Algebraic Groups", Progress in Math. 23, Birkhäuser 1982. Notes of Lectures given 1959-1960.

Other references:

Read other articles:

Former West Vancouver restaurant The Attic was a popular 1,200 seat Smörgåsbord restaurant in West Vancouver, British Columbia that was open from 1968 to 1981.[1] The owners were former Vancouver alderman Frank Baker (1922–1989) and his wife Dorothy.[2] Head shot of Alderman Baker, the co-owner of The Attic, circa 1958. Unique features The Attic is most remembered for a 1964 James Bond car in a glass case as well as a Toronado 67 X[3] built by George Barris for Exp...

 

العلاقات التركية الكورية الجنوبية     تركيا   كوريا الجنوبية تعديل مصدري - تعديل   العلاقات التركية الكورية الجنوبية، هي العلاقات الخارجية بين تركيا وكوريا الجنوبية. لتركيا سفارة في سيول، بينما لكوريا الجنوبية سفارة في أنقرة وقنصلية عامة في إسطنبول. والبلد...

 

Process of generating an image from a model Image synthesis redirects here. Not to be confused with Text-to-image model. For other uses, see Computer graphics § Image types. For 3-dimensional rendering, see 3D rendering. For rendering of HTML, see browser engine. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rendering computer gra...

العلاقات الإكوادورية اللوكسمبورغية الإكوادور لوكسمبورغ   الإكوادور   لوكسمبورغ تعديل مصدري - تعديل   العلاقات الإكوادورية اللوكسمبورغية هي العلاقات الثنائية التي تجمع بين الإكوادور ولوكسمبورغ.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عا...

 

LibreOffice Wahana mulai pada LibreOffice 7.2.4.1 (dirilis pada bulan Desember 2021, dijalankan di Linux dan KDE Plasma 5 dengan bundel ikon Breeze)TipePaket aplikasi perkantoran BerdasarkaOpenOffice.org Versi pertama25 Januari 2011; 13 tahun lalu (2011-01-25)Versi stabil 7.6.6 (28 Maret 2024) 24.2.2 (28 Maret 2024) GenrePaket aplikasi perkantoranLisensiGNU LGPLv3 dengan kontribusi baru berlisensi-ganda di bawah MPLv2.0[1]BahasaDaftarAfrikaans, Albania, Amhara, Arab, Armenia, Ass...

 

Football clubFC Presnya MoscowFull nameFootball Club Presnya MoscowFounded1978Dissolved2006GroundKrasnaya Presnya Stadium Home colours Away colours FC Presnya Moscow (Russian: ФК «Пресня» Москва) was a Russian football team based in Moscow. It was founded in 1978 as FC Krasnaya Presnya Moscow. It participated in the third-tier Soviet Second League and was notable for giving the start for the careers of Oleg Romantsev, Vasili Kulkov and Aleksandr Mostovoi. History In 1990, when...

Surinamese football club Football clubKamal DewakerFull nameSociaal Culturele Sportvereniging Kamal DewakerFounded15 August 1941; 82 years ago (1941-08-15)GroundEddy Blackman StadionCapacity2,000LeagueHoofdklasse2010–115th SCSV Kamal Dewaker is a Surinamese football club based in Livorno.[1] The club plays in the Surinamese Hoofdklasse, the top tier of football in the nation. The club was founded on August 15, 1941.[2] Current squad 2011–12 Note: Flags in...

 

Neoeutrypanus Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Neoeutrypanus Neoeutrypanus adalah genus kumbang tanduk panjang yang tergolong famili Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup atau kayu yang telah ditebang. Referensi...

 

Terung belanda Status konservasi Data Kurang  (IUCN 2.3) Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Angiospermae (tanpa takson): Eudikotil (tanpa takson): Asterids Ordo: Solanales Famili: Solanaceae Genus: Solanum Spesies: S. betaceum Nama binomial Solanum betaceumCav. Terung belanda atau terong belanda (Solanum betaceum) adalah jenis tanaman anggota keluarga terung-terungan (Solanaceae) yang berasal dari wilayah Amerika Selatan.[1] Di Indonesia terung ini mungkin...

Men's association football team This article is about the men's team. For the women's team, see Algeria women's national football team. AlgeriaNickname(s)الخُضر (The Greens)[1] الأفناك  (The Fennec foxes)[2]مُحَارِبِي الصَّحْرَاء  (The Desert Warriors)[3]AssociationAlgerian Football Federation (FAF)ConfederationCAF (Africa)Sub-confederationUNAF (North Africa)Head coachVladimir PetkovićCaptainYacine BrahimiMost capsIslam Slim...

 

Lake in Tamil Nadu, IndiaMookaneri LakeKannankurichi LakeMookaneri Lake with the Shevaroy Hills in the backgroundMookaneri LakeLocationKannankurichi, Salem, Tamil Nadu, IndiaCoordinates11°41′11″N 78°10′45″E / 11.68639°N 78.17917°E / 11.68639; 78.17917TypeLakeBasin countriesIndiaSurface area23.5 ha (58 acres)[1]Islands47[2]SettlementsSalem Mookaneri Lake, also called Kannankurichi Lake, is a lake in Kannankurichi, in the Salem Talu...

 

Canadian Tire Centre Informazioni generaliStato Canada Ubicazione1000 Palladium DriveOttawa, Ontario K2V 1A5 Inizio lavori7 luglio 1994 Inaugurazione15 gennaio 1996 ProprietarioEugene MelnykCapital Sports Properties ProgettoRossetti ArchitectsMurray & Murray Architects Intitolato aCanadian Tire Informazioni tecnichePosti a sedere21.347 Coperturasì Uso e beneficiariHockey su ghiaccio Ottawa Senators (NHL) (1996-oggi) Ottawa 67's (OHL) (2012-oggi) LacrosseOttawa Rebel (NLL) ...

「アプリケーション」はこの項目へ転送されています。英語の意味については「wikt:応用」、「wikt:application」をご覧ください。 この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2018年4月) 古い情報を更新する必要があります。(2021年3月)出...

 

Final of the 2001–02 edition of the Coupe de France Football match2002 Coupe de France finalEvent2001–02 Coupe de France Bastia0 0Lorient 0 1 Date11 May 2002VenueStade de France, Saint-DenisRefereeÉric PoulatAttendance66,215← 2001 2003 → The 2002 Coupe de France final was a football match held at Stade de France, Saint-Denis on 11 May 2002, that saw FC Lorient defeat SC Bastia 1–0 thanks to a goal by Jean-Claude Darcheville. The final is also famous for a post-game pran...

 

International prime meridian used for GPS and other systems This article is about Earth's current international standard prime meridian. For the historical prime meridian, see Prime meridian (Greenwich). For the general concept, see prime meridian. 0°class=notpageimage| Modern IERS Reference Meridian on Earth Countries that touch the Equator (red) and the Prime Meridian (blue) The IERS Reference Meridian (IRM), also called the International Reference Meridian, is the prime meridian (0° long...

جزء من سلسلة مقالات حولحساب المثلثات مفاهيم رئيسة التاريخ الاستعمالات الدّوال الدوال العكسية حساب مثلثات معممة حساب المثلثات الكروية أدوات مرجعية المتطابقات القيم الدقيقة للثوابت الجداول دائرة الوحدة قواعد وقوانين الجيوب جيوب التمام الظّلال ظلال التمام مبرهنة فيثاغور...

 

County in Georgia, United States Not to be confused with Seminole County, Florida. County in GeorgiaSeminole CountyCountySeminole County Courthouse in Donalsonville SealLocation within the U.S. state of GeorgiaGeorgia's location within the U.S.Coordinates: 30°56′N 84°52′W / 30.93°N 84.87°W / 30.93; -84.87Country United StatesState GeorgiaFoundedNovember 2, 1920; 104 years ago (1920)Named forSeminole tribeSeatDonalsonvilleLargest city...

 

Bus services in and around Milton Keynes, England Route X5 from Oxford to Cambridge passing the Quadrant:MK Buses in Milton Keynes are run by a mixture of operators on a network of urban and rural routes in and around the Milton Keynes urban area. These services have a varied history involving five different companies. At the foundation of the 'New City' in 1967 and for some years afterwards, Milton Keynes was served by a rural bus service between and to the pre-existing towns. Apart from a ...

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini perlu dirapikan dan ditata ulang agar memenuhi pedoman tata letak Wikipedia. Silakan perbaiki artikel ini agar memenuhi standar Wikipedia. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini tidak memiliki bagian pembuka yang sesuai dengan standa...

 

2011 single by Calvin Harris Feel So CloseSingle by Calvin Harrisfrom the album 18 Months Written2009Released19 August 2011 (2011-08-19)RecordedSummer 2010GenreElectro housedance-popLength3:27LabelDeconstructionFly EyeColumbiaUltraSongwriter(s)Calvin HarrisProducer(s)Calvin HarrisCalvin Harris singles chronology Bounce (2011) Feel So Close (2011) We Found Love (2011) Music videoFeel So Close on YouTube Feel So Close is a song by Scottish DJ and singer Calvin Harris, released as...