Vertex cover

Example graph that has a vertex cover comprising 2 vertices (bottom), but none with fewer.

In graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph.

In computer science, the problem of finding a minimum vertex cover is a classical optimization problem. It is NP-hard, so it cannot be solved by a polynomial-time algorithm if P ≠ NP. Moreover, it is hard to approximate – it cannot be approximated up to a factor smaller than 2 if the unique games conjecture is true. On the other hand, it has several simple 2-factor approximations. It is a typical example of an NP-hard optimization problem that has an approximation algorithm. Its decision version, the vertex cover problem, was one of Karp's 21 NP-complete problems and is therefore a classical NP-complete problem in computational complexity theory. Furthermore, the vertex cover problem is fixed-parameter tractable and a central problem in parameterized complexity theory.

The minimum vertex cover problem can be formulated as a half-integral, linear program whose dual linear program is the maximum matching problem.

Vertex cover problems have been generalized to hypergraphs, see Vertex cover in hypergraphs.

Definition

Examples of vertex covers
Examples of minimum vertex covers

Formally, a vertex cover of an undirected graph is a subset of such that , that is to say it is a set of vertices where every edge has at least one endpoint in the vertex cover . Such a set is said to cover the edges of . The upper figure shows two examples of vertex covers, with some vertex cover marked in red.

A minimum vertex cover is a vertex cover of smallest possible size. The vertex cover number is the size of a minimum vertex cover, i.e. . The lower figure shows examples of minimum vertex covers in the previous graphs.

Examples

  • The set of all vertices is a vertex cover.
  • The endpoints of any maximal matching form a vertex cover.
  • The complete bipartite graph has a minimum vertex cover of size .

Properties

  • A set of vertices is a vertex cover if and only if its complement is an independent set.
  • Consequently, the number of vertices of a graph is equal to its minimum vertex cover number plus the size of a maximum independent set.[1]

Computational problem

The minimum vertex cover problem is the optimization problem of finding a smallest vertex cover in a given graph.

INSTANCE: Graph
OUTPUT: Smallest number such that has a vertex cover of size .

If the problem is stated as a decision problem, it is called the vertex cover problem:

INSTANCE: Graph and positive integer .
QUESTION: Does have a vertex cover of size at most ?

The vertex cover problem is an NP-complete problem: it was one of Karp's 21 NP-complete problems. It is often used in computational complexity theory as a starting point for NP-hardness proofs.

ILP formulation

Assume that every vertex has an associated cost of . The (weighted) minimum vertex cover problem can be formulated as the following integer linear program (ILP).[2]

minimize    (minimize the total cost)
subject to for all (cover every edge of the graph),
for all . (every vertex is either in the vertex cover or not)

This ILP belongs to the more general class of ILPs for covering problems. The integrality gap of this ILP is , so its relaxation (allowing each variable to be in the interval from 0 to 1, rather than requiring the variables to be only 0 or 1) gives a factor- approximation algorithm for the minimum vertex cover problem. Furthermore, the linear programming relaxation of that ILP is half-integral, that is, there exists an optimal solution for which each entry is either 0, 1/2, or 1. A 2-approximate vertex cover can be obtained from this fractional solution by selecting the subset of vertices whose variables are nonzero.

Exact evaluation

The decision variant of the vertex cover problem is NP-complete, which means it is unlikely that there is an efficient algorithm to solve it exactly for arbitrary graphs. NP-completeness can be proven by reduction from 3-satisfiability or, as Karp did, by reduction from the clique problem. Vertex cover remains NP-complete even in cubic graphs[3] and even in planar graphs of degree at most 3.[4]

For bipartite graphs, the equivalence between vertex cover and maximum matching described by Kőnig's theorem allows the bipartite vertex cover problem to be solved in polynomial time.

For tree graphs, an algorithm finds a minimal vertex cover in polynomial time by finding the first leaf in the tree and adding its parent to the minimal vertex cover, then deleting the leaf and parent and all associated edges and continuing repeatedly until no edges remain in the tree.

Fixed-parameter tractability

An exhaustive search algorithm can solve the problem in time 2knO(1), where k is the size of the vertex cover. Vertex cover is therefore fixed-parameter tractable, and if we are only interested in small k, we can solve the problem in polynomial time. One algorithmic technique that works here is called bounded search tree algorithm, and its idea is to repeatedly choose some vertex and recursively branch, with two cases at each step: place either the current vertex or all its neighbours into the vertex cover. The algorithm for solving vertex cover that achieves the best asymptotic dependence on the parameter runs in time .[5] The klam value of this time bound (an estimate for the largest parameter value that could be solved in a reasonable amount of time) is approximately 190. That is, unless additional algorithmic improvements can be found, this algorithm is suitable only for instances whose vertex cover number is 190 or less. Under reasonable complexity-theoretic assumptions, namely the exponential time hypothesis, the running time cannot be improved to 2o(k), even when is .

However, for planar graphs, and more generally, for graphs excluding some fixed graph as a minor, a vertex cover of size k can be found in time , i.e., the problem is subexponential fixed-parameter tractable.[6] This algorithm is again optimal, in the sense that, under the exponential time hypothesis, no algorithm can solve vertex cover on planar graphs in time .[7]

Approximate evaluation

One can find a factor-2 approximation by repeatedly taking both endpoints of an edge into the vertex cover, then removing them from the graph. Put otherwise, we find a maximal matching M with a greedy algorithm and construct a vertex cover C that consists of all endpoints of the edges in M. In the following figure, a maximal matching M is marked with red, and the vertex cover C is marked with blue.

The set C constructed this way is a vertex cover: suppose that an edge e is not covered by C; then M ∪ {e} is a matching and e ∉ M, which is a contradiction with the assumption that M is maximal. Furthermore, if e = {uv} ∈ M, then any vertex cover – including an optimal vertex cover – must contain u or v (or both); otherwise the edge e is not covered. That is, an optimal cover contains at least one endpoint of each edge in M; in total, the set C is at most 2 times as large as the optimal vertex cover.

This simple algorithm was discovered independently by Fanica Gavril and Mihalis Yannakakis.[8]

More involved techniques show that there are approximation algorithms with a slightly better approximation factor. For example, an approximation algorithm with an approximation factor of is known.[9] The problem can be approximated with an approximation factor in - dense graphs.[10]

Inapproximability

No better constant-factor approximation algorithm than the above one is known. The minimum vertex cover problem is APX-complete, that is, it cannot be approximated arbitrarily well unless P = NP. Using techniques from the PCP theorem, Dinur and Safra proved in 2005 that minimum vertex cover cannot be approximated within a factor of 1.3606 for any sufficiently large vertex degree unless P = NP.[11] Later, the factor was improved to for any .[12] Moreover, if the unique games conjecture is true then minimum vertex cover cannot be approximated within any constant factor better than 2.[13]

Although finding the minimum-size vertex cover is equivalent to finding the maximum-size independent set, as described above, the two problems are not equivalent in an approximation-preserving way: The Independent Set problem has no constant-factor approximation unless P = NP.

Pseudocode

APPROXIMATION-VERTEX-COVER(G)
C = 
E'= G.E

while E'  :
    let (u, v) be an arbitrary edge of E'
    C = C  {u, v}
    remove from E' every edge incident on either u or v

return C

[14] [15]

Applications

Vertex cover optimization serves as a model for many real-world and theoretical problems. For example, a commercial establishment interested in installing the fewest possible closed circuit cameras covering all hallways (edges) connecting all rooms (nodes) on a floor might model the objective as a vertex cover minimization problem. The problem has also been used to model the elimination of repetitive DNA sequences for synthetic biology and metabolic engineering applications.[16][17]

See also

Notes

  1. ^ Gallai 1959.
  2. ^ Vazirani 2003, pp. 121–122
  3. ^ Garey, Johnson & Stockmeyer 1974
  4. ^ Garey & Johnson 1977; Garey & Johnson 1979, pp. 190 and 195.
  5. ^ Chen, Kanj & Xia 2006
  6. ^ Demaine et al. 2005
  7. ^ Flum & Grohe (2006, p. 437)
  8. ^ Papadimitriou & Steiglitz 1998, p. 432, mentions both Gavril and Yannakakis. Garey & Johnson 1979, p. 134, cites Gavril.
  9. ^ Karakostas 2009
  10. ^ Karpinski & Zelikovsky 1998
  11. ^ Dinur & Safra 2005
  12. ^ Khot, Minzer & Safra 2017; Dinur et al. 2018; Khot, Minzer & Safra 2018
  13. ^ Khot & Regev 2008
  14. ^ Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001) [1990]. "Section 35.1: The vertex-cover problem". Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill. pp. 1024–1027. ISBN 0-262-03293-7.
  15. ^ Chakrabarti, Amit (Winter 2005). "Approximation Algorithms: Vertex Cover" (PDF). Computer Science 105. Dartmouth College. Retrieved 21 February 2005.
  16. ^ Hossain, Ayaan; Lopez, Eriberto; Halper, Sean M.; Cetnar, Daniel P.; Reis, Alexander C.; Strickland, Devin; Klavins, Eric; Salis, Howard M. (2020-07-13). "Automated design of thousands of nonrepetitive parts for engineering stable genetic systems". Nature Biotechnology. 38 (12): 1466–1475. doi:10.1038/s41587-020-0584-2. ISSN 1087-0156. PMID 32661437. S2CID 220506228.
  17. ^ Reis, Alexander C.; Halper, Sean M.; Vezeau, Grace E.; Cetnar, Daniel P.; Hossain, Ayaan; Clauer, Phillip R.; Salis, Howard M. (November 2019). "Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays". Nature Biotechnology. 37 (11): 1294–1301. doi:10.1038/s41587-019-0286-9. ISSN 1546-1696. OSTI 1569832. PMID 31591552. S2CID 203852115.

References

Read other articles:

Не следует путать с воинским эшелоном — термином для обозначения временных формирований. Эта статья содержит материал неэнциклопедичного характера. Пожалуйста, улучшите её в соответствии с правилами написания статей. Эту статью необходимо исправить в соответствии ...

 

 

Dough NutsSutradaraArvid E. GillstromProduserLouis BursteinPemeranBilly WestOliver HardySinematograferHerman Obrock Jr.PenyuntingBen H. CohenTanggal rilis 15 Juni 1917 (1917-06-15) NegaraAmerika SerikatBahasaFilm bisuantarjudul bahasa Inggris Dough Nuts adalah film bisu komedi Amerika Serikat tahun 1917 yang menampilkan Oliver Hardy. Pemeran Billy West - Billy, Tukang Roti Baru Ethel Marie Burton - Ethel, Kasir (sebagai Ethel Burton) Oliver Hardy - Babe, Koki (sebagai Babe Hardy) Leo Whi...

 

 

1995 novel by Pete Dexter The Paperboy First editionAuthorPete DexterCountryUnited StatesLanguageEnglishGenreNovelPublisherRandom HousePublication date1995Media typePrint (hardback & paperback)ISBN0-385-31572-4 The Paperboy is a 1995 novel published by American author Pete Dexter. Plot Hillary Van Wetter was jailed for the murder of an unscrupulous local sheriff, Thurmond Call. Call had previously stomped Wetter's handcuffed cousin to death. Wetter is now on death row and awaiting ex...

Minor Roman deity Religion inancient RomeMarcus Aurelius (head covered)sacrificing at the Temple of Jupiter Practices and beliefs libation votum temples festivals ludi funerary practices imperial cult mystery religions Priesthoods Pontifices Augures Vestales Flamines Fetiales Epulones Fratres Arvales Deities Twelve major gods Capitoline Triad Aventine Triad Underworld indigitamenta Agriculture Birth Deified leaders: Julius Caesar Augustus Related topics Glossary of ancient Roman religion Roma...

 

 

Mazmur 125Naskah Gulungan Mazmur 11Q5 di antara Naskah Laut Mati memuat salinan sejumlah besar mazmur Alkitab yang diperkirakan dibuat pada abad ke-2 SM.KitabKitab MazmurKategoriKetuvimBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen19← Mazmur 124 Mazmur 126 → Mazmur 125 (disingkat Maz 125 atau Mz 125; penomoran Septuaginta: Mazmur 124) adalah sebuah mazmur dalam bagian ke-5 Kitab Mazmur di Alkitab Ibrani dan Perjanjian Lama dalam Alkitab Kristen. Tidak ada catatan n...

 

 

South Korean singer (born 1993) This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (July 2022) Parts of this article (those related to the subsections in the Personal life section) need to be updated...

Pour les articles homonymes, voir Ministère du Commerce. Cet article est une ébauche concernant la politique et le Venezuela. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Le ministère du Commerce (Ministerio del Poder Popular para el Comercio, en espagnol, littéralement, « ministère du Pouvoir populaire pour le Commerce ») est un ancien ministère du gouvernement du Venezuela dissout en 2015....

 

 

Gaelic football event All-Ireland Minor Football Championship 2023Championship detailsDates5 April – 9 July 2023Teams31All-Ireland ChampionsWinning teamDerry (6th win)CaptainFionn McEldowneyManagerDamian McErleanAll-Ireland FinalistsLosing teamMonaghanCaptainMatthew CarolanManagerDermot MaloneProvincial ChampionsMunsterKerryLeinsterDublinUlsterDerryConnachtMayoChampionship statisticsNo. matches played76Goals total199 (2.61 per game)Points total1637 (21.53 per game)Top Scorer Max McGinnity (...

 

 

Character set of the original IBM PC Code page 437Code page 437, as rendered by an IBM PC using standard VGAMIME / IANAIBM437Alias(es)cp437, 437, csPC8CodePage437,[1] OEM-USLanguage(s)English, German, SwedishClassificationExtended ASCII, OEM code pageExtendsUS-ASCIIOther related encoding(s)Code page 850, CWI-2vte Code page 437 (CCSID 437) is the character set of the original IBM PC (personal computer).[2] It is also known as CP437, OEM-US, OEM 437,[3] PC-8,[4] ...

Franken Challenge  ATP Challenger Tour Nama turnamenFürthLokasiFürth, JermanKategoriATP Challenger TourPermukaanTanah liat merahJumlah peserta32T/32K/16GHadiah uang€42,500+HSitus webwww.schickedanz-open.com Australian Peter Luczak menjadi juara ketegori tunggal di Fürth tahun 2007 dan 2009Florian Mayer (GER) menjadi juara kategori tunggal tahun 2006Hicham Arazi (MOR) mengalahkan Andrei Chesnokov untuk juara tahun 1996Michael Stich (GER) menjuarai ganda tahun 2008 bersama Martin Sin...

 

 

American politician (1935–2020) Mitch GreenlickMember of the Oregon House of Representativesfrom the 33rd districtIn officeJanuary 13, 2003 – May 15, 2020Preceded byBill WittSucceeded byMaxine Dexter[1] Personal detailsBornMerwyn Ronald Greenlick(1935-03-12)March 12, 1935Detroit, Michigan, U.S.DiedMay 15, 2020(2020-05-15) (aged 85)Portland, Oregon, U.S.Political partyDemocraticAlma materWayne State UniversityUniversity of Michigan Merwyn Ronald Mitch Gree...

 

 

Map of Jordan The history of Jews in Jordan can be traced back to Biblical times.[citation needed] Presently, there are no legal restrictions on Jews in Jordan, and they are permitted to own property and conduct business in the country, but in 2006 there were reported to be no Jewish citizens of Jordan,[1] nor any synagogues or other Jewish institutions. Israelite tribes Main article: Transjordan in the Bible 1759 map of the initial tribal allocations - the actual territories...

2005 film score by Dario MarianelliPride & PrejudiceFilm score by Dario MarianelliReleasedNovember 15, 2005 (2005-11-15) (U.S.)GenreClassicalLength41:22LabelDecca RecordsProducerNick AngelDario Marianelli chronology Sauf le respect que je vous dois(2005) Pride & Prejudice(2005) The Return(2006) Pride & Prejudice (Music from the Motion Picture) is the soundtrack to the 2005 film of the same name and was composed by Dario Marianelli and performed by Jean-Yves ...

 

 

American politician John Calhoun Sheppard82nd Governor of South CarolinaIn officeJuly 10, 1886 – November 30, 1886LieutenantVacantPreceded byHugh Smith ThompsonSucceeded byJohn Peter Richardson IIIPresident Pro Tempore of the South Carolina SenateIn officeJanuary 9, 1900 – January 10, 1905GovernorMiles Benjamin McSweeneyDuncan Clinch HeywardPreceded byRobert Bethea ScarboroughSucceeded byRichard Irvine Manning IIIMember of the South Carolina Senate from Edgefield CountyIn off...

 

 

Nama ini menggunakan cara penamaan Spanyol: nama keluarga pertama atau paternalnya adalah Álvarez dan nama keluarga kedua atau maternalnya adalah Velázquez. Edson Álvarez Álvarez bersama Ajax pada 2023Informasi pribadiNama lengkap Edson Omar Álvarez Velázquez[1]Tanggal lahir 24 Oktober 1997 (umur 26)Tempat lahir Tlalnepantla, MeksikoTinggi 187 cm (6 ft 2 in)[2]Posisi bermain Gelandang bertahan, bek tengahInformasi klubKlub saat ini West Ham Unite...

أرخبيل غوايتيكاس Archipiélago de las Guaitecas   معلومات جغرافية الإحداثيات 43°55′17″S 73°49′33″W / 43.921322222222°S 73.825841666667°W / -43.921322222222; -73.825841666667   المسطح المائي المحيط الهادئ  أعلى ارتفاع (م) 67 متر  الحكومة البلد تشيلي  التقسيم الإداري إقليم آيسن  تعديل مصدري - تعديل ...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2016) سوبر ميغا بيسبول المطور ميتل هيد سوفتوير الناشر ميتل هيد سوفتوير الموزع ستيم،  وبلاي ستيشن ناو[1]،  وجوجل بلاي،  ومتجر مايكروسوفت  النظام مايك...

 

 

Football stadium in Dundee, Scotland Carolina PortCarolina PortLocation within Dundee City council areaLocationDundee, ScotlandCoordinates56°27′58″N 2°56′02″W / 56.466°N 2.934°W / 56.466; -2.934SurfaceGrassOpened1891Closed1899TenantsDundee East End F.C. (1891–1893)Strathmore F.C. (1893–1894)Dundee F.C. (1894–1899) Carolina Port was a mult-sport stadium in Dundee, Scotland. It staged Scottish national championships in cycling and athletics,...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. RadboudumcGeografiLokasiNijmegen, NetherlandsOrganisasiPendanaanPublikJenisUntuk belajar mengajarAfiliasi dengan universitasUniversitas Radboud NijmegenPelayananUnit Gawat DaruratLevel I Trauma CenterRanjang pasien1.065SejarahDibuka1956; 68 tahun lalu...

 

 

Curling competition at Edmonton, Alberta 2009 Roar of the RingsHost cityEdmonton, AlbertaArenaRexall PlaceDatesDecember 6–13Attendance175,852[1]Men's winner Team MartinCurling clubSaville Sports Centre, EdmontonSkipKevin MartinThirdJohn MorrisSecondMarc KennedyLeadBen HebertAlternateAdam EnrightCoachJules OwcharFinalist Glenn HowardWomen's winner Team BernardCurling clubCalgary Winter Club, CalgarySkipCheryl BernardThirdSusan O'ConnorSecondCarolyn DarbyshireLeadCori BartelAltern...