Truncation (geometry)


Truncated square is a regular octagon:
t{4} = {8}
=

Truncated cube
t{4,3} or

Truncated cubic honeycomb
t{4,3,4} or

In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids.

Uniform truncation

In general any polyhedron (or polytope) can also be truncated with a degree of freedom as to how deep the cut is, as shown in Conway polyhedron notation truncation operation.

A special kind of truncation, usually implied, is a uniform truncation, a truncation operator applied to a regular polyhedron (or regular polytope) which creates a resulting uniform polyhedron (uniform polytope) with equal edge lengths. There are no degrees of freedom, and it represents a fixed geometric, just like the regular polyhedra.

In general all single ringed uniform polytopes have a uniform truncation. For example, the icosidodecahedron, represented as Schläfli symbols r{5,3} or , and Coxeter-Dynkin diagram or has a uniform truncation, the truncated icosidodecahedron, represented as tr{5,3} or , . In the Coxeter-Dynkin diagram, the effect of a truncation is to ring all the nodes adjacent to the ringed node.

A uniform truncation performed on the regular triangular tiling {3,6} results in the regular hexagonal tiling {6,3}.

Truncation of polygons

A truncated n-sided polygon will have 2n sides (edges). A regular polygon uniformly truncated will become another regular polygon: t{n} is {2n}. A complete truncation (or rectification), r{3}, is another regular polygon in its dual position.

A regular polygon can also be represented by its Coxeter-Dynkin diagram, , and its uniform truncation , and its complete truncation . The graph represents Coxeter group I2(n), with each node representing a mirror, and the edge representing the angle π/n between the mirrors, and a circle is given around one or both mirrors to show which ones are active.

Parametric truncations of a triangle

{3}

t{3} = {6}

r{3} = {3}

Star polygons can also be truncated. A truncated pentagram {5/2} will look like a pentagon, but is actually a double-covered (degenerate) decagon ({10/2}) with two sets of overlapping vertices and edges. A truncated great heptagram {7/3} gives a tetradecagram {14/3}.

Uniform truncation in regular polyhedra and tilings and higher

Truncations of the cube beyond rectification

When "truncation" applies to platonic solids or regular tilings, usually "uniform truncation" is implied, which means truncating until the original faces become regular polygons with twice as many sides as the original form.

This sequence shows an example of the truncation of a cube, using four steps of a continuous truncating process between a full cube and a rectified cube. The final polyhedron is a cuboctahedron. The middle image is the uniform truncated cube; it is represented by a Schläfli symbol t{p,q,...}.

A bitruncation is a deeper truncation, removing all the original edges, but leaving an interior part of the original faces. Example: a truncated octahedron is a bitruncated cube: t{3,4} = 2t{4,3}.

A complete bitruncation, called a birectification, reduces original faces to points. For polyhedra, this becomes the dual polyhedron. Example: an octahedron is a birectification of a cube: {3,4} = 2r{4,3}.

Another type of truncation, cantellation, cuts edges and vertices, removing the original edges, replacing them with rectangles, removing the original vertices, and replacing them with the faces of the dual of the original regular polyhedra or tiling.

Higher dimensional polytopes have higher truncations. Runcination cuts faces, edges, and vertices. In 5 dimensions, sterication cuts cells, faces, and edges.

Edge-truncation

Truncating the edges of a cube, creating a chamfered cube

Edge-truncation is a beveling, or chamfer for polyhedra, similar to cantellation, but retaining the original vertices, and replacing edges by hexagons. In 4-polytopes, edge-truncation replaces edges with elongated bipyramid cells.

Alternation or partial truncation

A uniform alternation of a truncated cuboctahedron gives a nonuniform snub cube.

Alternation or partial truncation removes only some of the original vertices.

In partial truncation, or alternation, half of the vertices and connecting edges are completely removed. The operation applies only to polytopes with even-sided faces. Faces are reduced to half as many sides, and square faces degenerate into edges. For example, the tetrahedron is an alternated cube, h{4,3}.

Diminishment is a more general term used in reference to Johnson solids for the removal of one or more vertices, edges, or faces of a polytope, without disturbing the other vertices. For example, the tridiminished icosahedron starts with a regular icosahedron with 3 vertices removed.

Other partial truncations are symmetry-based; for example, the tetrahedrally diminished dodecahedron.

Generalized truncations

Types of truncations shown on an edge isolated from a larger polygon or polyhedron with red and blue vertices. The edge reverses direction after complete truncation.

The linear truncation process can be generalized by allowing parametric truncations that are negative, or that go beyond the midpoint of the edges, causing self-intersecting star polyhedra, and can parametrically relate to some of the regular star polygons and uniform star polyhedra.

  • Shallow truncation - Edges are reduced in length, faces are truncated to have twice as many sides, while new facets are formed, centered at the old vertices.
  • Uniform truncation are a special case of this with equal edge lengths. The truncated cube, t{4,3}, with square faces becoming octagons, with new triangular faces are the vertices.
  • Antitruncation A reverse shallow truncation, truncated outwards off the original edges, rather than inward. This results in a polytope which looks like the original, but has parts of the dual dangling off its corners, instead of the dual cutting into its own corners.
  • Complete truncation or rectification - The limit of a shallow truncation, where edges are reduced to points. The cuboctahedron, r{4,3}, is an example.
  • Hypertruncation A form of truncation that goes past the rectification, inverting the original edges, and causing self-intersections to appear.
  • Quasitruncation A form of truncation that goes even farther than hypertruncation where the inverted edge becomes longer than the original edge. It can be generated from the original polytope by treating all the faces as retrograde, i.e. going backwards round the vertex. For example, quasitruncating the square gives a regular octagram (t{4,3}={8/3}), and quasitruncating the cube gives the uniform stellated truncated hexahedron, t{4/3,3}.
Truncations on a square

Types of truncation on a square, {4}, showing red original edges, and new truncated edges in cyan. A uniform truncated square is a regular octagon, t{4}={8}. A complete truncated square becomes a new square, with a diagonal orientation. Vertices are sequenced around counterclockwise, 1-4, with truncated pairs of vertices as a and b.
Truncations of the cube

taC

Cube
{4,3} C

tC

Truncation
t{4,3} tC

tC

Complete truncation
r{4,3} aC

thC

Antitruncation taC

Hypertruncation thC

taC

Complete quasitruncation
aqC


Quasitruncation
t{4/3,3} tqC

tqC

Complete hypertruncation ahC

thC

See also

References

  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 (pp. 145–154 Chapter 8: Truncation)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
Polyhedron operators
Seed Truncation Rectification Bitruncation Dual Expansion Omnitruncation Alternations
t0{p,q}
{p,q}
t01{p,q}
t{p,q}
t1{p,q}
r{p,q}
t12{p,q}
2t{p,q}
t2{p,q}
2r{p,q}
t02{p,q}
rr{p,q}
t012{p,q}
tr{p,q}
ht0{p,q}
h{q,p}
ht12{p,q}
s{q,p}
ht012{p,q}
sr{p,q}

Read other articles:

1970 film by Claude Chabrol For similarly titled films, see Breach (disambiguation). The BreachDVD coverLa RuptureDirected byClaude ChabrolScreenplay byClaude ChabrolBased onThe Balloon Manby Charlotte ArmstrongProduced byAndré GénovèsStarringStéphane AudranJean-Pierre CasselMichel BouquetAnnie CordyCinematographyJean RabierEdited byJacques GaillardMusic byPierre JansenDistributed byGaumont Film Company (France)New Line Cinema (US)Release date 26 August 1970 (1970-08-26) Ru...

 

 

Alfonso VIII dan Ratu Eleanor. Alfonso VIII (11 November 1155 – 5 Oktober 1214), disebut Él de las Navas, adalah Raja Kastilia dari tahun 1158 sampai kematiannya. Ia terkenal karena perannya dalam Reconquista dan jatuhnya Muwahidun. Setelah kalah besar dengan pasukannya sendiri dalam pertempuran Alarcos melawan Muwahidun, ia memimpin koalisi pangeran Kristen dan tentara salib yang menghancurkan kekuatan Muwahidun dalam pertempuran Navas de Tolosa tahun 1212, yang menandai tib...

 

 

AACTA AwardsPenghargaan terkini: AACTA Awards ke-8DeskripsiUntuk mengakui dan menghormati prestasi menonjol dalam industri film dan televisi Australia.[1]NegaraAustraliaDipersembahkan olehAustralian Academy of Cinema and Television Arts (AACTA)Diberikan perdana1958 (untuk menghormati prestasi 1957/1958)Situs webhttp://www.aacta.orgSiaran televisi/radioSaluranABC (1977, 1980–1983, 1986–1987, 1989–1990, 1993, 1995, 1997, 2003–2004)SBS (1998–2000)Seven Network (1978, 2001, 2016...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Shenzhen Airlines – berita · surat kabar · buku · cendekiawan · JSTOR Shenzhen Airlines深圳航空公司 IATA ICAO Kode panggil ZH CSZ SHENZHEN AIR DidirikanNovember 1992Mulai beroperasi17 September 199...

 

 

Union Army atau Tentara Federal adalah pasukan darat yang bertarung untuk Union pada masa Perang Saudara Amerika dari 1861 sampai 1865. Ini meliputi tentara reguler permanen Amerika Serikat, yang dipadukan dengan sejumlah besar unit temporer yang terdiri dari para sukarelawan dan wajib militer. Union Army bertarung dan mengalahkan Confederate Army pada masa perang tersebut. Sekitar dua juta dan mungkin dua setengah juta orang bertugas dalam Union Army; hampir seluruhnya (lebih dari 94%) adala...

 

 

Italian footballer Thomas Manfredini Manfredinin with Atalanta in 2010Personal informationDate of birth (1980-05-27) 27 May 1980 (age 43)Place of birth Ferrara, ItalyHeight 1.80 m (5 ft 11 in)Position(s) Centre-backTeam informationCurrent team SP La Fiorita (manager)Senior career*Years Team Apps (Gls)1997–1999 SPAL 14 (0)1999–2005 Udinese 64 (2)2004 → Fiorentina (loan) 11 (0)2004–2005 → Catania (loan) 30 (3)2005–2013 Atalanta 134 (4)2005–2006 → Rimini (loan...

Ne doit pas être confondu avec Slovaquie ou Slavonie. République de Slovénie(sl) Republika Slovenija(it) Repubblica di Slovenia (hu) Szlovén Köztársaság Drapeau de la Slovénie Armoiries de la Slovénie Hymne en slovène : Zdravljica (« Je lève mon verre ») Fête nationale 25 juin · Événement commémoré Proclamation d'indépendance vis-à-vis de la Yougoslavie (1991) La république de Slovénie en Europe (l'Union européenne en vert clair...

 

 

OrganelRincianPelafalan/ɔːrɡəˈnɛl/Bagian dariSelPengidentifikasiBahasa LatinorganellaMeSHD015388THH1.00.01.0.00009FMA63832Daftar istilah mikroanatomi[sunting di Wikidata] Dalam biologi sel, organel adalah subunit khusus, biasanya di dalam sel, yang memiliki fungsi tertentu. Nama organel berasal dari gagasan bahwa struktur ini adalah bagian dari sel, seperti halnya organ bagi tubuh. Akhirnya, nama yang diberikan adalah organel, dengan akhiran -el yang menjelaskan sifat diminutif (kec...

 

 

Painting by Pablo Picasso Girl in a ChemiseArtistPablo PicassoYearc.1905Mediumoil on canvasDimensions72.7 cm × 60 cm (28.6 in × 24 in)LocationTate Girl in a Chemise (French: Jeune femme en chemise) is an oil-on-canvas painting created c. 1905 by Pablo Picasso. It is a portrait of a girl, whom experts believe to be Madeleine, Picasso's girlfriend during this period. Stylistically, the painting belongs to Picasso's Rose Period, although it is predomin...

Robert FiskRobert Fisk di Al Jazeera Forum 2010Lahir(1946-07-12)12 Juli 1946Maidstone, Kent, InggrisMeninggal30 Oktober 2020(2020-10-30) (umur 74)Dublin, IrlandiaWarga negara Irlandia Inggris Pendidikan Universitas Lancaster (BA, 1968) Trinity College Dublin (PhD, 1985) PekerjaanKoresponden Timur Tengah untuk The IndependentKarya terkenal Jacob's Award Amnesty International UK Press Awards British Press Awards International Journalist of the Year Lannan Cultural Freedom Prize Suami/istr...

 

 

Chika JessicaLahirSisca Jessica25 April 1988 (umur 36)Bandung, Jawa Barat, IndonesiaKebangsaanIndonesiaNama lainChika JessicaPekerjaanPemeranpresenterkomedianTahun aktif2007—sekarang Sisca Jessica (lahir 25 April 1988), lebih dikenal sebagai Chika Jessica adalah pemeran, presenter dan komedian Indonesia. Filmografi Film Tahun Judul Peran Catatan Ref. 2009 Merantau Astri 2012 Bangkit dari Kubur Trisna 2012 Dendam dari Kuburan Poppy 2013 Get M4rried Cewek alay Slank Nggak Ada ...

 

 

习近平 习近平自2012年出任中共中央总书记成为最高领导人期间,因其废除国家主席任期限制、开启总书记第三任期、集权统治、公共政策与理念、知识水平和自述经历等争议,被中国大陸及其他地区的民众以其争议事件、个人特征及姓名谐音创作负面称呼,用以恶搞、讽刺或批评习近平。对习近平的相关负面称呼在互联网上已经形成了一种活跃、独特的辱包亚文化。 权力�...

Lullington HeathSite of Special Scientific InterestLocationEast SussexGrid referenceTQ 543 017[1]InterestBiologicalArea72.7 hectares (180 acres)[1]Notification1986[1]Location mapMagic Map Lullington Heath is a 72.7-hectare (180-acre) biological Site of Special Scientific Interest west of Eastbourne in East Sussex.[1][2] It is a national nature reserve[3] and a Nature Conservation Review site, Grade I.[4] This site has two nationally unc...

 

 

1918 peace treaty during World War I Not to be confused with the contemporaneous Treaty of Brest-Litovsk between Russia and the Central Powers. Treaty of Brest-Litovsk(9 February 1918)BrotfriedenБерестейський мирSigning of the Peace Treaty of Brest-Litovsk during the night of 9-10 February 1918. Sitting in the middle from the left: Count Ottokar Czernin, Richard von Kühlmann and Vasil RadoslavovSigned9 February 1918LocationBrest-Litovsk, Grodno Governorate (German occupation)...

 

 

Diagram tangga dari rangkaian Monostable Multivibrator Logika tangga (Ladder logic) adalah bahasa pemrograman yang dipakai untuk menggambarkan secara grafis diagram rangkaian elektronika dan perangkat keras komputer berdasarkan logika berbasis-relay yang banyak dijumpai pada aplikasi Programmable Logic Controllers (PLC) dan kendali industri. Sesuai dengan namanya, program ini menggunakan gambar anak tangga yang terdiri dari garis-garis tegak dan garis mendatar untuk menyajikan fungsi logika r...

Rosemarie Wetzel (lahir 20 Januari 1976) adalah model internasional asal Belanda yang pernah populer pada dekade 1990-an. Rosemarie pertama kali bekerja untuk agen Factory Models di Amsterdam sewaktu bekerja sebagai asisten dokter. Selanjutnya ia masuk dalam jaringan Elite Model dan beralih ke Paris. Ia banyak terlibat dalam sesi foto untuk iklan, peragaan busana, dan penerbitan pada paruh akhir dekade 90-an. Semenjak tahun 2000 namanya menghilang, karena ia memutuskan untuk fokus pada keluar...

 

 

Cet article concerne un métier artistique. Pour le recueil, voir Parolier (recueil). Cet article est une ébauche concernant la musique, l’art et un métier. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Jean Baptiste Clément photographié par Nadar. Un parolier, ou une parolière, écrit le texte d'une chanson, la mélodie étant l'œuvre du compositeur, ou du beatmaker. L'antériorité des paroles ou...

 

 

Argentina en los Juegos Olímpicos Bandera de ArgentinaCódigo COI ARGCON Comité Olímpico Argentino.Juegos Olímpicos de Pekín 2008Deportistas 138 (80 hombres y 58 mujeres) en 19 deportesAbanderado Apertura: Emanuel GinóbiliCierre: Juan CuruchetMedallasPuesto: 34 de 204 2 0 4 6 Historia olímpicaJuegos de verano 1900 • 1904 • 1908 • 1912 • 1920 • 1924 • 1928 • 1932 • 1936 • 1948 &#...

Tower and palace structure in the Alhambra of Granada Exterior view of the tower The Torre de la Cautiva (Spanish: Torre de la Cautiva, lit. 'tower of the captive [woman]') is a tower in the walls of the Alhambra in Granada, Spain. It is one of several towers along the Alhambra's northern wall which were converted into a small palatial residence in the 14th century. It is considered an exceptional example of Nasrid domestic architecture from this period.[1]: 19...

 

 

2002 album by Circus Devils The Harold Pig MemorialStudio album by Circus DevilsReleased2002GenreAlternative rock, psychedelic rockLabelRockathon Records /the Fading Captain SeriesProducerTodd TobiasCircus Devils chronology Ringworm Interiors(2001) The Harold Pig Memorial(2002) Pinball Mars(2003) Professional ratingsReview scoresSourceRatingAllmusic[1]Popmatters[2]The Broken Face The Harold Pig Memorial is the second studio album by the American psychedelic rock trio Circu...