Transverse Mercator projection has many implementations. Louis Krüger in 1912 developed one of his two implementations[1] that expressed as a power series in the longitude difference from the central meridian. These series were recalculated by Lee in 1946,[2] by Redfearn in 1948,[3] and by Thomas in 1952.[4][5] They are often referred to as the Redfearn series, or the Thomas series. This implementation is of great importance since it is widely used in the U.S. State Plane Coordinate System,[5] in national (Great Britain,[6] Ireland[7] and many others) and also international[8] mapping systems, including the Universal Transverse Mercator coordinate system (UTM).[9][10] They are also incorporated into the Geotrans coordinate converter made available by the United States National Geospatial-Intelligence Agency.[11] When paired with a suitable geodetic datum, the series deliver high accuracy in zones less than a few degrees in east-west extent.
Preliminaries I: datum and ellipsoid parameters
The series must be used with a geodetic datum which specifies the position, orientation and shape of a reference ellipsoid. Although the projection formulae depend only on the shape parameters of the reference ellipsoid the full set of datum parameters is necessary to link the projection coordinates to true positions in three-dimensional space. The datums and reference ellipsoids associated with particular implementations of the Redfearn formulae are listed below. A comprehensive list of important ellipsoids is given in the article on the Figure of the Earth.
In specifying ellipsoids it is normal to give the semi-major axis (equatorial axis), , along with either the inverse flattening, , or the semi-minor axis (polar axis), , or sometimes both. The series presented below use the eccentricity, , in preference to the flattening, . In addition they use the parameters , called the third flattening, and , the second eccentricity. There are only two independent shape parameters and there are many relations between them: in particular
The projection formulae also involve , the radius of curvature of the meridian (at latitude ), and , the radius of curvature in the prime vertical.
(The prime vertical is the vertical plane orthogonal to the meridian plane at a point on the ellipsoid). The radii of curvature are defined as follows:
In addition the functions and are defined as:
For compactness it is normal to introduce the following abbreviations:
Preliminaries II: meridian distance
Meridian distance
The article on Meridian arc describes several methods of computing , the meridian distance from the equator to a point at latitude : the expressions given below are those used in the 'actual implementation of the Transverse Mercator projection by the OSGB.[6] The truncation error is less than 0.1mm so the series is certainly accurate to within 1mm, the design tolerance of the OSGB implementation.
where the coefficients are given to order (order ) by
The meridian distance from equator to pole is
The form of the series specified for UTM is a variant of the above exhibiting higher order terms with a truncation error of 0.03mm.
Inverse meridian distance
Neither the OSGB nor the UTM implementations define an inverse series for the meridian distance; instead they use an iterative scheme. For a given meridian distance first set and then iterate using
until mm.
The inversion can be effected by a series, presented here for later reference. For a given meridian distance, , define the rectifying latitude by
The geodetic latitude corresponding to is (Snyder[5] page 17):
where, to ,
An outline of the method
The normal aspect of the Mercator projection of a sphere of radius is described by the equations
By construction, the projection from the geodetic coordinates (,) to the coordinates (,) is conformal. If the coordinates (,) are used to define a point in the complex plane, then any analytic function will define another conformal projection. Kruger's method involves seeking the specific which generates a uniform scale along the central meridian, . He achieved this by investigating a Taylor series approximation with the projection coordinates given by:
where the real part of must be proportional to the meridian distance function . The (complex) coefficients depend on derivatives of which can be reduced to derivatives of with respect to , (not ). The derivatives are straightforward to evaluate in principle but the expressions become very involved at high orders because of the complicated relation between and . Separation of real and imaginary parts gives the series for and and further derivatives give the scale and convergence factors.
The series in detail
This section presents the eighth order series as published by Redfearn[3] (but with and interchanged and the longitude difference from the central meridian denoted by instead of ). Equivalent eighth order series, with different notations, can be found in Snyder[5] (pages 60–64) and at many web sites such as that for the Ordnance Survey of Great Britain.[6]
The direct series are developed in terms of the longitude difference from the central meridian, expressed in radians: the inverse series are developed in terms of the ratio . The projection is normally restricted to narrow zones (in longitude) so that both of the expansion parameters are typically less than about 0.1, guaranteeing rapid convergence. For example in each UTM zone these expansion parameters are less than 0.053 and for the British national grid (NGGB) they are less than 0.09. All of the direct series giving , , scale , convergence are functions of both latitude and longitude and the parameters of the ellipsoid: all inverse series giving , , , are functions of both and and the parameters of the ellipsoid.
Direct series
In the following series is the difference of the longitude of an arbitrary point and the longitude of the chosen central meridian: is in radians and is positive east of the central meridian. The W coefficients are functions of listed below. The series for reduces to the scaled meridian distance when .
Inverse series
The inverse series involve a further construct: the footpoint latitude. Given a point on the projection the footpoint is defined as the point on the central meridian with coordinates . Since the scale on the central meridian is the meridian distance from the equator to the footpoint is equal to . The corresponding footpoint latitude, , is calculated by iteration or the inverse meridian distance series as described above.
Denoting functions evaluated at by a subscript '1', the inverse series are:
Point scale and convergence
The point scale is independent of direction for a conformal transformation. It may be calculated in terms of geographic or projection coordinates. Note that the series for reduce to when either or . The convergence may also be calculated (in radians) in terms of geographic or projection coordinates:
The coefficients for all series
Accuracy of the series
The exact solution of Lee-Thompson,[12] implemented by Karney (2011),[13] is of great value in assessing the accuracy of the truncated Redfearn series. It confirms that the truncation error of the (eighth order) Redfearn series is less than 1 mm out to a longitude difference of 3 degrees, corresponding to a distance of 334 km from the central meridian at the equator but a mere 35 km at the northern limit of an UTM zone.
The Redfearn series become much worse as the zone widens. Karney discusses Greenland as an instructive example. The long thin landmass is centred on 42W and, at its broadest point, is no more than 750 km from that meridian whilst the span in longitude reaches almost 50 degrees. The Redfearn series attain a maximum error of 1 kilometre.
Implementations
The implementations give below are examples of the use of the Redfearn series. The defining documents in various countries differ slightly in notation and, more importantly, in the neglect of some of the small terms. The analysis of small terms depends on the latitude and longitude ranges in the various grids. There are also slight differences in the formulae utilised for meridian distance: one extra term is sometimes added to the formula specified above but such a term is less than 0.1mm.
false easting of true grid origin, E0 (metres): 400,000
false northing of true grid origin, N0 (metres): -100,000
E = E0 + x = 400000 + x
N = N0 + y -k0*m(49°)= y - 5527063
The extent of the grid is 300 km to the east and 400 km to the west of the central meridian and 1300 km north from the false origin, (OSGB[6] Section 7.1), but with the exclusion of parts of Northern Ireland, Eire and France. A grid reference is denoted by the pair (E,N) where E ranges from slightly over zero to 800000m and N ranges from zero to 1300000m. To reduce the number of figures needed to give a grid reference, the grid is divided into 100 km squares, which each have a two-letter code. National Grid positions can be given with this code followed by an easting and a northing both in the range 0 and 99999m.
The projection formulae differ slightly from the Redfearn formulae presented here. They have been simplified by neglect of most terms of seventh and eighth order in or : the only exception is seventh order term in the series for in terms of . This simplification is based on the examination of the Redfearn terms over the actual extent of the grid. The only other differences are (a) the absorption of the central scale factor into the radii of curvature and meridian distance, (b) the replacement of the parameter by the parameter (defined above).
The article on the Universal Transverse Mercator projection gives a general survey, but the full specification is defined in U.S. Defense Mapping Agency Technical Manuals TM8358.1[9] and TM8358.2.[10] This section provides details for zone 30 as another example of the Redfearn formulae (usually termed Thomas formulae in the United States.)
ellipsoid: International 1924 (a.k.a. Hayford 1909)
major axis: 6 378 388.000
minor axis: 6 356 911.946
central meridian longitude: 3°W
projection origin: 3°W and 0°N
central meridian scale factor: 0.9996
true grid origin: 3°W and 0°N
false easting of true grid origin, E0: 500,000
E = E0 + x = 500000 + x
northern hemisphere false northing of true grid origin N0: 0
northern hemisphere: N = N0 + y = y
southern hemisphere false northing of true grid origin N0: 10,000,000
southern hemisphere: N = N0 + y = 10,000,000 + y
The series adopted for the meridian distance incorporates terms of fifth order in but the manual states that these are less than 0.03 mm (TM8358.2[10] Chapter 2). The projection formulae use, , the second eccentrity (defined above) instead of . The grid reference schemes are defined in the article Universal Transverse Mercator coordinate system. The accuracy claimed for the UTM projections is 10 cm in grid coordinates and 0.001 arc seconds for geodetic coordinates.
Ireland
The transverse Mercator projection in Eire and Northern Ireland (an international implementation spanning one country and part of another) is currently implemented in two ways:
This is an interesting example of the transition between use of a traditional ellipsoid and a modern global ellipsoid. The adoption of radically different false origins helps to prevent confusion between the two systems.
^Krüger, L. (1912). "Konforme Abbildung des Erdellipsoids in der Ebene". Royal Prussian Geodetic Institute, New Series 52. doi:10.2312/GFZ.b103-krueger28. {{cite journal}}: Cite journal requires |journal= (help)
^Thomas, Paul D (1952). Conformal Projections in Geodesy and Cartography. Washington: U.S. Coast and Geodetic Survey Special Publication 251.
^ abcdSnyder, John P. (1987). Map Projections – A Working Manual. U.S. Geological Survey Professional Paper 1395. United States Government Printing Office, Washington, D.C.This paper can be downloaded from USGS pages. It gives full details of most projections, together with interesting introductory sections, but it does not derive any of the projections from first principles.
Penggambaran ulang modern terhadap versi Commissioners' Grid Plan untuk Manhattan tahun 1807, beberapa tahun sebelum diadopsi tahun 1811. Commissioners' Plan of 1811 adalah sebuah proposal New York State Legislature yang digunakan pada 1811 untuk pembangunan dan penjualan tanah di Manhattan antara 14th Street dan Washington Heights. Rencana ini dianggap sebagai penggunaan tata jalan paling terkenal dan bagi sejumlah sejarawan rencana ini jauh lebih maju dan visioner. Sejak hari-hari awalnya, ...
Medical conditionVaginal dischargeMedical speculum exam shows normal vagina and cervix with normal milky white vaginal discharge on the vaginal walls, cervix, and pooled in the posterior vaginal fornix (IUD strings visible at opening of cervix)SpecialtyGynecology For the periodic bloody discharge originating from the uterus, see Menstruation. Vaginal discharge is a mixture of liquid, cells, and bacteria that lubricate and protect the vagina.[1][2] This mixture is constantly pr...
Pour les articles homonymes, voir Dernières Nouvelles (homonymie) et DNA. Dernières Nouvelles d'Alsace DNA Pays France Langue Français Périodicité Quotidien Genre Généraliste régional Prix au numéro 1,10 € Diffusion 134 197[1] ex. (2018/2019) Fondateur Heinrich Ludwig Kayser Date de fondation 1877 Éditeur Dernières Nouvelles d'Alsace Ville d’édition Strasbourg Propriétaire Crédit Mutuel via EBRA Directeur de publication Laurent Couronne Rédacteur en chef Frédéric Vézard...
Belgian politician You can help expand this article with text translated from the corresponding article in French. (January 2022) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a topic to this t...
Abbott Handerson ThayerThayer c. 1890Lahir(1849-08-12)12 Agustus 1849Boston, Massachusetts, ASMeninggal29 Mei 1921(1921-05-29) (umur 71)Dublin, New Hampshire, ASKebangsaanAmerikaDikenal atasLukisan, KamuflaseKarya terkenalAngel (luisan) Concealing-Coloration in the Animal Kingdom (book) Abbott Handerson Thayer (12 Agustus 1849 – 29 Mei 1921) adalah seorang seniman Amerika, naturalis dan guru. Sebagai pelukis dari potret, tokoh, hewan, dan lanskap, ia menikmati keun...
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Batasang Pambansa canvass for the 1981 Philippine presidential election – news · newspapers · books · scholar · JSTOR (July 2022) The following is the official canvassing of votes by the Batasang Pambansa for the 1981 Philippine presidential election....
Dans le nom hongrois Rajk László, le nom de famille précède le prénom, mais cet article utilise l’ordre habituel en français László Rajk, où le prénom précède le nom. Ne doit pas être confondu avec László Rajk (architecte). László RajkFonctionsMinistre des Affaires étrangères de HongrieGouvernement de Lajos Dinnyés (d)Gouvernement d’István Dobi (d)5 août 1948 - 11 juin 1949Ministre de l’Intérieur de la HongrieGouvernement de Lajos Dinnyés (d)...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: National Public Safety Commission Japan – news · newspapers · books · scholar · JSTOR (April 2009) (Learn how and when to remove this message) National Public Safety Commission国家公安委員会Kokka Kōan Iinkai2nd Building of the Central Common Govern...
Soviet crewed moonbase project For other uses, see Zvezda (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Zvezda moonbase – news · newspapers · books · scholar · JSTOR (August 2013) (Learn how and when to remove this message) ZvezdaMoon Site informationControlled bySoviet space pr...
Surbana JurongJenisPerusahaan swasta[1]IndustriPerencanaan dan perancangan perkotaanPendahuluJurong International HoldingsSurbana International ConsultantsDidirikan22 Juni 2015; 8 tahun lalu (2015-06-22)KantorpusatSingapuraPemilikTemasek HoldingsKaryawan13.000 (2016)AnakusahaSMEC Holdings, KTP Consultants, Sino-Sun Architects & Engineers, Aetos Security Management, Robert Bird Group, Atelier TenSitus websurbanajurong.com Surbana Jurong Pte Ltd adalah anak usaha Temasek H...
كرة القدم في ألعاب البحر الأبيض المتوسط 2005تفاصيل المسابقةالبلد المضيف إسبانياالتواريخ23 يونيو - 3 يونيوالفرق9 (من 2 اتحاد كونفدرالي)الأماكن4 (في 4 مدن مضيفة)المراكز النهائيةالبطل إسبانيا (1 لقب)الوصيف تركياالمركز الثالث ليبياالمركز الرابع المغربإحصائيات �...
American basketball player and coach Jack BurmasterThe Illio, 1948Personal informationBorn(1926-12-23)December 23, 1926Elgin, IllinoisDiedSeptember 27, 2005(2005-09-27) (aged 78)Glenview, IllinoisNationalityAmericanListed height6 ft 3 in (1.91 m)Listed weight190 lb (86 kg)Career informationHigh schoolElgin (Elgin, Illinois)CollegeIllinois (1944–1948)NBA draft1948: – round, –Selected by the St. Louis BombersPlaying career1948–1950PositionGuardNumber5, 10Ca...
الدوري الفرنسي 2011–12 تفاصيل الموسم الدوري الفرنسي النسخة 74 البلد فرنسا التاريخ بداية:6 أغسطس 2011 نهاية:20 مايو 2012 المنظم اتحاد فرنسا لكرة القدم البطل نادي مونبلييه الهابطون نادي ديجون، ونادي أوكسير، ونادي كاين مباريات ملعوبة 380 عدد المشا�...
HypogastriumSurface lines of the front of the thorax and abdomen.Front view of the thoracic and abdominal viscera. a. Median plane. b b. Lateral planes. c c. Trans tuberculllar plane. d d. Subcostal plane. e e. Transpyloric plane.RincianPengidentifikasiBahasa Latinregio hypogastrica, regio pubicaTA98A01.2.04.007TA2263FMA14602Daftar istilah anatomi[sunting di Wikidata] Hipogastrium atau kerempung (disebut juga daerah hipogastrik atau daerah suprapubik ) adalah suatu daerah perut yang terle...
سفارة دولة فلسطين لدى جنوب أفريقيا فلسطين جنوب أفريقيا الإحداثيات 25°44′27″S 28°13′11″E / 25.7407°S 28.21966°E / -25.7407; 28.21966 البلد جنوب إفريقيا المكان بريتوريا الاختصاص جنوب إفريقيا السَفير حنان جرار تعديل مصدري - تعديل سفارة دولة فلسطين لدى جنوب أفريقيا هي ا�...
1841 massacre in the Central Murray region, Australia Rufus River massacrePart of the Australian frontier warsA photograph of the Rufus RiverLocationRufus River, New South WalesCoordinates34°03′S 141°15′E / 34.050°S 141.250°E / -34.050; 141.250Date1841 August 27; 182 years ago (27-08-1841)Attack typeMassacreDeaths30+ killedVictimsIndigenous AustraliansPerpetratorsSouth Australian Police led by Sub-Inspector Bernard Shaw and British colonists l...
Fokker Super Universal adalah sebuah pesawat yang diproduksi di Amerika Serikat pada akhir tahun 1920, versi yang besar dan lebih baik dari Fokker Universal, dilengkapi dengan sayap kantilever dan kokpit tertutup. Hal ini kemudian juga diproduksi di bawah lisensi di Kanada dan Jepang. Operator Canada Jepang Manchukuo Amerika Serikat Argentina Referensi Dierikx, Marc. Fokker: A Transatlantic Biography. Washington, D.C.: Smithsonian Institution Press, 1997. ISBN 1...
Sanremo Music Festival 2008La parola alla musicaDatesSemi-final 125 February 2008Semi-final 226 February 2008Semi-final 327 February 2008Semi-final 428 February 2008Final1 March 2008HostVenueTeatro AristonSanremo, Liguria, ItalyPresenter(s)Pippo Baudoand Piero Chiambretti, Bianca Guaccero, Andrea OsvártMusical directorPippo CarusoArtistic directorPippo BaudoHost broadcasterRai 1VoteVoting systemMixed (popular jury, quality jury and televotes)Big Artists sectionNumber of entries20WinnerGiò D...