Transfinite number

In mathematics, transfinite numbers or infinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of infinite sets, and the transfinite ordinals, which are ordinal numbers used to provide an ordering of infinite sets.[1][2] The term transfinite was coined in 1895 by Georg Cantor,[3][4][5][6] who wished to avoid some of the implications of the word infinite in connection with these objects, which were, nevertheless, not finite.[citation needed] Few contemporary writers share these qualms; it is now accepted usage to refer to transfinite cardinals and ordinals as infinite numbers. Nevertheless, the term transfinite also remains in use.

Notable work on transfinite numbers was done by Wacław Sierpiński: Leçons sur les nombres transfinis (1928 book) much expanded into Cardinal and Ordinal Numbers (1958,[7] 2nd ed. 1965[8]).

Definition

Any finite natural number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify the order of a member within an ordered set[9] (e.g., "the third man from the left" or "the twenty-seventh day of January"). When extended to transfinite numbers, these two concepts are no longer in one-to-one correspondence. A transfinite cardinal number is used to describe the size of an infinitely large set,[2] while a transfinite ordinal is used to describe the location within an infinitely large set that is ordered.[9][failed verification] The most notable ordinal and cardinal numbers are, respectively:

  • (Omega): the lowest transfinite ordinal number. It is also the order type of the natural numbers under their usual linear ordering.
  • (Aleph-null): the first transfinite cardinal number. It is also the cardinality of the natural numbers. If the axiom of choice holds, the next higher cardinal number is aleph-one, If not, there may be other cardinals which are incomparable with aleph-one and larger than aleph-null. Either way, there are no cardinals between aleph-null and aleph-one.

The continuum hypothesis is the proposition that there are no intermediate cardinal numbers between and the cardinality of the continuum (the cardinality of the set of real numbers):[2] or equivalently that is the cardinality of the set of real numbers. In Zermelo–Fraenkel set theory, neither the continuum hypothesis nor its negation can be proved.

Some authors, including P. Suppes and J. Rubin, use the term transfinite cardinal to refer to the cardinality of a Dedekind-infinite set in contexts where this may not be equivalent to "infinite cardinal"; that is, in contexts where the axiom of countable choice is not assumed or is not known to hold. Given this definition, the following are all equivalent:

  • is a transfinite cardinal. That is, there is a Dedekind infinite set such that the cardinality of is
  • There is a cardinal such that

Although transfinite ordinals and cardinals both generalize only the natural numbers, other systems of numbers, including the hyperreal numbers and surreal numbers, provide generalizations of the real numbers.[10]

Examples

In Cantor's theory of ordinal numbers, every integer number must have a successor.[11] The next integer after all the regular ones, that is the first infinite integer, is named . In this context, is larger than , and , and are larger still. Arithmetic expressions containing specify an ordinal number, and can be thought of as the set of all integers up to that number. A given number generally has multiple expressions that represent it, however, there is a unique Cantor normal form that represents it,[11] essentially a finite sequence of digits that give coefficients of descending powers of .

Not all infinite integers can be represented by a Cantor normal form however, and the first one that cannot is given by the limit and is termed .[11] is the smallest solution to , and the following solutions give larger ordinals still, and can be followed until one reaches the limit , which is the first solution to . This means that in order to be able to specify all transfinite integers, one must think up an infinite sequence of names: because if one were to specify a single largest integer, one would then always be able to mention its larger successor. But as noted by Cantor,[citation needed] even this only allows one to reach the lowest class of transfinite numbers: those whose size of sets correspond to the cardinal number .

See also

References

  1. ^ "Definition of transfinite number | Dictionary.com". www.dictionary.com. Retrieved 2019-12-04.
  2. ^ a b c "Transfinite Numbers and Set Theory". www.math.utah.edu. Retrieved 2019-12-04.
  3. ^ "Georg Cantor | Biography, Contributions, Books, & Facts". Encyclopedia Britannica. Retrieved 2019-12-04.
  4. ^ Georg Cantor (Nov 1895). "Beiträge zur Begründung der transfiniten Mengenlehre (1)". Mathematische Annalen. 46 (4): 481–512. Open access icon
  5. ^ Georg Cantor (Jul 1897). "Beiträge zur Begründung der transfiniten Mengenlehre (2)". Mathematische Annalen. 49 (2): 207–246. Open access icon
  6. ^ Georg Cantor (1915). Philip E.B. Jourdain (ed.). Contributions to the Founding of the Theory of Transfinite Numbers (PDF). New York: Dover Publications, Inc. English translation of Cantor (1895, 1897).
  7. ^ Oxtoby, J. C. (1959), "Review of Cardinal and Ordinal Numbers (1st ed.)", Bulletin of the American Mathematical Society, 65 (1): 21–23, doi:10.1090/S0002-9904-1959-10264-0, MR 1565962
  8. ^ Goodstein, R. L. (December 1966), "Review of Cardinal and Ordinal Numbers (2nd ed.)", The Mathematical Gazette, 50 (374): 437, doi:10.2307/3613997, JSTOR 3613997
  9. ^ a b Weisstein, Eric W. (3 May 2023). "Ordinal Number". mathworld.wolfram.com.
  10. ^ Beyer, W. A.; Louck, J. D. (1997), "Transfinite function iteration and surreal numbers", Advances in Applied Mathematics, 18 (3): 333–350, doi:10.1006/aama.1996.0513, MR 1436485
  11. ^ a b c John Horton Conway, (1976) On Numbers and Games. Academic Press, ISBN 0-12-186350-6. (See Chapter 3.)

Bibliography

Read other articles:

Untuk kegunaan lain, lihat Kertajaya (disambiguasi). Kereta api KertajayaKereta api Kertajaya saat melintasi Tambun, Bekasi.Informasi umumJenis layananKereta api antarkotaStatusBeroperasiPendahulugaya baru malam utaraMulai beroperasiSekitar tahun 1994Operator saat iniKereta Api IndonesiaLintas pelayananStasiun awalSurabaya PasarturiStasiun akhirPasarsenenJarak tempuh719 kmWaktu tempuh rerata10 jam 31 menitFrekuensi perjalananSatu kali keberangkatan tiap hariJenis relRel beratPelayanan penumpa...

 

 

Badan Nasional Pencarian dan Pertolongan BNPP / BASARNASGambaran umumDidirikan28 Februari 1972Dasar hukumUndang-Undang Nomor 29 Tahun 2014 Peraturan Presiden Republik Indonesia Nomor 83 Tahun 2016Bidang tugasPencarian dan PertolonganSloganAvignam Jagat Samagram (Sanskerta) Semoga Selamatlah Alam SemestaKepalaMarsekal Madya TNI Kusworo, S.E., M.M.Sekretaris UtamaDr. Abdul Haris Achadi, S.H., DESS.DeputiDeputi Bidang Sarana dan Prasarana, dan Sistem Komunikasi Pencarian dan PertolonganMars...

 

 

PKS 1302-102Observation data (Epoch J2000.0)ConstellationVirgo[1]Right ascension13h 05m 33.01498s[2]Declination−10° 33′ 19.4266″[2]Redshift0.2784[1]Distance3.5×10^9 ly (1.1 Gpc)[1]TypeFSRS, FSRQ, FSQ, QSO, E4[2][1]Apparent magnitude (V)14.9[1]Other designationsPG 1302-102, PG 1302-103, ICRF J130533.0-103319, PKS 1302-102, PKS 1302-103, PKS J1305-1033, PKS B1302-102, QSO J1305-1033, QSO...

Book by Jules Verne The Flight to France AuthorJules VerneOriginal titleLe Chemin de FranceIllustratorGeorges RouxCountryFranceLanguageFrenchSeriesThe Extraordinary Voyages #31GenreAdventure novelPublisherPierre-Jules HetzelPublication date1887Published in English1888Media typePrint (Hardback)Preceded byNorth Against South Followed byTwo Years' Vacation  The Flight to France (French: Le Chemin de France, 1887) is an adventure novel written by Jules Verne abo...

 

 

Chemical group (–CH=CH₂) For the carbocation, see Vinyl cation. For other uses, see Vinyl. Chemical structure of the vinyl functional group. In organic chemistry, a vinyl group (abbr. Vi;[1] IUPAC name: ethenyl group[2]) is a functional group with the formula −CH=CH2. It is the ethylene (IUPAC name: ethene) molecule (H2C=CH2) with one fewer hydrogen atom. The name is also used for any compound containing that group, namely R−CH=CH2 where R is any other group of atoms. ...

 

 

Application in medieval astrology Astrology Background Worship of heavenly bodies History of astrology Astrology and astronomy Planets Behenian Classical Traditions, types, and systems Astrology and science Astrologers Astrological organizations Traditions Babylonian Chinese Hellenistic Hindu Islamic Jewish Tibetan Western Branches Natal Electional Horary Medical Financial Locational Psychological Meteorological Astrological signs Aries Taurus Gemini Cancer Leo Virgo Libra Scorpio Sagittarius...

Botanical garden located in Rockford, Illinois Anderson Japanese GardensCoordinates42°17′24″N 89°03′28″W / 42.29005390°N 89.05779540°W / 42.29005390; -89.05779540Area12 acres (4.9 ha)Established1978 (1978)FounderJohn AndersonOperated by501(c)(3) organizationWebsiteandersongardens.org The Anderson Japanese Gardens is a 12-acre (4.9 ha) Japanese garden located in Rockford, Illinois. History The gardens were established in 1978 by John R. A...

 

 

2004 song by Shannon Noll DriveSingle by Shannon Nollfrom the album That's What I'm Talking About B-side Let Me Fall with You Working Class Man Released19 April 2004 (2004-04-19)[1]Recorded2004Length3:59LabelBMG AustraliaSongwriter(s) Phil Thornalley Bryan Adams Producer(s) Bryan Jones Adam Reily Shannon Noll singles chronology What About Me (2004) Drive (2004) Learn to Fly (2004) Drive is a song written by Phil Thornalley and Bryan Adams that was the second single rele...

 

 

Quality related to inquisitive thinking Curious redirects here. For other uses, see Curious (disambiguation) and Curiosity (disambiguation). Space and telescopes have been a quintessential symbol for curiosity.[1] Part of a series onEmotions Affect Classification In animals Emotional intelligence Mood Regulation Interpersonal Dysregulation Valence Emotions Acceptance Admiration Affection Amusement Anger Angst Anguish Annoyance Anticipation Anxiety Apathy Arousal Awe Belongingness Bore...

Comics character Doctor HurtSimon Hurt wearing Thomas Wayne's bat-themed masquerade costume, art by Frank Quitely.Publication informationPublisherDC ComicsFirst appearanceUnnamed: Batman #156 (June 1963)As Simon Hurt: Batman #673 (June 2008)Created bySheldon Moldoff (writer)Charles Paris (artist)2008 revision by Grant MorrisonIn-story informationAlter egoSimon HurtSpeciesHumanTeam affiliationsBlack GloveClub of VillainsReligion of CrimeNotable aliasesThe Hole in Things, Mangrove Pierce, Dr. H...

 

 

En el Moulin-Rouge, el baile(Dressage des nouvelles par Valentin-le-Désossé) Año 1890Autor Toulouse-LautrecTécnica Óleo sobre telaEstilo PostimpresionismoTamaño 115 cm × 150 cmLocalización Museo de Arte de Filadelfia, Filadelfia, Estados UnidosPaís de origen Francia[editar datos en Wikidata] En el Moulin-Rouge, el baile o Baile en el Moulin Rouge (Dressage des nouvelles par Valentin-le-Désossé) es un cuadro del pintor francés Henri de Toulouse-Lautrec. Está realizado al...

 

 

Artikel ini perlu diterjemahkan dari bahasa Inggris ke bahasa Indonesia. Artikel ini ditulis atau diterjemahkan secara buruk dari Wikipedia bahasa Inggris. Jika halaman ini ditujukan untuk komunitas bahasa Inggris, halaman itu harus dikontribusikan ke Wikipedia bahasa Inggris. Lihat daftar bahasa Wikipedia. Artikel yang tidak diterjemahkan dapat dihapus secara cepat sesuai kriteria A2. Jika Anda ingin memeriksa artikel ini, Anda boleh menggunakan mesin penerjemah. Namun ingat, mohon tidak men...

Marine Corps base in North Carolina, US Marine Corps Base Camp LejeuneNear Jacksonville, North Carolina in the United StatesA M1A1 Abrams main battle tank with 2nd Tank Battalion, 2nd Marine Division at Camp Lejeune during 2013MCB Camp LejeuneLocation in the United StatesShow map of the United StatesMCB Camp LejeuneLocation in North CarolinaShow map of North CarolinaCoordinates34°35′00.9″N 77°21′37.4″W / 34.583583°N 77.360389°W / 34.583583; -77.360389T...

 

 

Moderna, Inc.Kantor pusat Moderna di Cambridge, MassachusettsSebelumnyaModeRNA Therapeutics(2010–2018)JenisPublikKode emitenNasdaq: MRNAKomponen NASDAQ-100Komponen Indeks Russell 1000IndustriBioteknologiDidirikanSeptember 2010; 13 tahun lalu (2010-09)PendiriDerrick RossiTimothy A. SpringerRobert S. LangerKenneth R. ChienNoubar AfeyanKantorpusatTechnology Square no. 200Cambridge, Massachusetts, Amerika SerikatTokohkunciStéphane Bancel, CEOStephen Hoge, PresidenDavid Meline, CFONou...

 

 

Depuis son attachement aux États-Unis le 15 mars 1820, l'État du Maine élit deux sénateurs, membres du Sénat fédéral. Susan Collins, sénatrice senior républicaine de l'État. Angus King, sénateur junior de l'État, indépendant. Liste Liste des sénateurs des États-Unis représentant le Maine Sénateur de classe 1 Congrès Sénateur de classe 2 John Holmes (en) (républicain-démocratepuis national-républicain) 16e(1819-1821) John Chandler (en) (républicain-démocratepu...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2013) يقارن الجدول التالي بين أبرز برامج توليد الطلب. معلومات عامة الحزمة الترخيص التسعير التسويق بنظام برمجي البرمجيات كخدمة[1] $500+/شهر[2] الأوكوا (Eloqua) الب...

 

 

1993 2002 Élections législatives de 1997 dans la Meuse 2 sièges de députés à l'Assemblée nationale 25 mai et 1er juin 1997 Corps électoral et résultats Inscrits 138 102 Votants au 1er tour 97 054   70,28 %  1,4 Votes exprimés au 1er tour 91 876 Votants au 2d tour 102 340   74,11 % Votes exprimés au 2d tour 95 755 Gauche plurielle Liste Parti socialisteParti communiste françaisLes VertsMouvement des citoyensParti radical-social...

 

 

此条目或其章节有關正在連載或尚未完結的作品。維基百科不是新聞的收集处。請留心記載正確資訊,在信息相對明确之後進行編輯更新。 初戀怪獸 《初戀怪獸》第1本漫畫封面 初恋モンスター First Love Monster 罗马字 Hatsukoi Monsutā 類型 少女漫畫、愛情喜劇 漫画 作者 日吉丸晃(日语:日吉丸晃) 出版社 講談社 尖端出版 連載雜誌 ARIA 叢書 KCx ARIA 星戀館 連載期間 2013年3月號...

Scotland Template‑class Scotland portalThis template is within the scope of WikiProject Scotland, a collaborative effort to improve the coverage of Scotland and Scotland-related topics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.ScotlandWikipedia:WikiProject ScotlandTemplate:WikiProject ScotlandScotland articlesTemplateThis template does not require a rating on Wikipedia's content assessment sc...

 

 

(19) Vicálvaro Distrito de Madrid Desde arriba hacia la izquierda: Iglesia de Santa María La Antigua, Iglesia de la Beata Teresa de Calcuta, Facultad de Ciencias Jurídicas y Sociales de la Universidad Rey Juan Carlos, Vista de un parque y Calle del Horno. Coordenadas 40°24′15″N 3°36′29″O / 40.4042, -3.60806Entidad Distrito de Madrid • País  España • Barrios Casco Histórico de Vicálvaro (19.1)Valdebernardo (19.2)Valderrivas (19.3)El Cañavera...