1669 - In his book De solido intra solidum naturaliter contento[1]Nicolas Steno asserted that, although the number and size of crystal faces may vary from one crystal to another, the angles between corresponding faces are always the same. This was the original statement of the first law of crystallography (Steno's law).[2]
18th century
1723 - Moritz Anton Cappeller introduced the term crystallography in his book Prodromus Crystallographiae De Crystallis Improprie Sic Dictis Commentarium.[3]
1766 - Pierre-Joseph Macquer, in his Dictionnaire de Chymie, promoted mechanisms of crystallization based on the idea that crystals are composed of polyhedral molecules (primitive integrantes).[4]
1772 - Jean-Baptiste L. Romé de l'Isle developed geometrical ideas on crystal structure in his Essai de Cristallographie. He also described the twinning phenomenon in crystals.[5]
1781 - Abbé René Just Haüy (often termed the "Father of Modern Crystallography"[6]) discovered that crystals always cleave along crystallographic planes. Based on this observation, and the fact that the inter-facial angles in each crystal species always have the same value, Haüy concluded that crystals must be periodic and composed of regularly arranged rows of tiny polyhedra (molécules intégrantes). This theory explained why all crystal planes are related by small rational numbers (the law of rational indices).[7][8]
1783 - Jean-Baptiste L. Romé de l'Isle in the second edition of his Cristallographie used the contact goniometer to discover the law of constancy of interfacial angles: angles are constant and characteristic for crystals of the same chemical substance.[9]
1784 - René Just Haüy published his law of decrements: a crystal is composed of molecules arranged periodically in three dimensions.[10]
1795 - René Just Haüy lectured on his law of symmetry: "the manner in which Nature creates crystals is always obeying ... the law of the greatest possible symmetry, in the sense that oppositely situated but corresponding parts are always equal in number, arrangement, and form of their faces".[11]
19th century
1801 - René Just Haüy published his multi-volume Traité de Minéralogie in Paris. A second edition under the title Traité de Cristallographie was published in 1822.[12][13]
1801 - Déodat de Dolomieu published his Sur la philosophie minéralogique et sur l'espèce minéralogique in Paris.[14]
1815 - Christian Samuel Weiss, founder of the dynamist school of crystallography, developed a geometric treatment of crystals in which crystallographic axes are the basis for classification of crystals rather than Haüy's polyhedral molecules.[16]
1822 - Friedrich Mohs attempted to bring the molecular approach of Haüy and the geometric approach of Weiss into agreement.[18]
1823 - Franz Ernst Neumann invented a system of crystal face notation, by using the reciprocals of the intercepts with crystal axes, which becomes the standard for the next 60 years.[19]
1824 - Ludwig August Seeber conceived of the concept of using an array of discrete (molecular) points to represent a crystal.[20]
1877 - Ernest-François Mallard, building on the work of Auguste Bravais, published a memoir[33] on optically "anomalous" crystals (that is, those crystals the morphology of which seems to be of greater symmetry than their optics), in which the importance of crystal twinning and "pseudosymmetry"[34] were used as explanatory concepts.
1895 - Wilhelm Conrad Röntgen on 8 November 1895 produced and detected electromagnetic radiation in a wavelength range now known as X-rays or Röntgen rays, an achievement that earned him the first Nobel Prize in Physics in 1901. X-rays became the major mode of crystallographic research in the 20th century.[43]
1899 - Hermanus Haga and Cornelis Wind observed X-ray diffuse broadening through a slit and deduced that the wavelength of X-rays is on the order of an angstrom.[44]
1913 - Georges Friedel stated Friedel's law, a property of Fourier transforms of real functions. Friedel's law is used in X-ray diffraction, crystallography and scattering from real potential within the Born approximation.[55]
1914 - Max von Laue won the Nobel Prize in Physics "for his discovery of the diffraction of X-rays by crystals."[56]
1915 - William and Lawrence Bragg published the book X rays and crystal structure[57] and shared the Nobel Prize in Physics "for their services in the analysis of crystal structure by means of X-rays."[58]
1917 - Albert W. Hull independently discovered powder diffraction in researching the crystal structure of metals.[61][62]
1920 - Reginald Oliver Herzog and Willi Jancke published the first systematic analysis of X-ray diffraction patterns of cellulose extracted from a variety of sources.[63]
1921 - Paul Peter Ewald introduced a spherical construction for explaining the occurrence of diffraction spots, which is now called Ewald's sphere.[64]
1922 - Charles Galton Darwin formulated the theory of X-ray diffraction from imperfect crystals and introduced the concept of mosaicity in crystallography.[65][66]
1922 - Ralph Wyckoff published a book[67] containing tables with the positional coordinates permitted by the symmetry elements. These positions are now known as Wyckoff positions. This book was the forerunner of the International tables for crystallography, which first appeared in 1935.
1923 - William H. Bragg and Reginald E. Gibbs elucidated the structure of quartz.[70][71]
1923 - Paul Peter Ewald published his book Kristalle und Röntgenstrahlen (Crystals and X-rays).[72]
1924 - Louis de Broglie in his PhD thesis Recherches sur la théorie des quanta[73] introduced his theory of electron waves. This was the start of electron and neutron diffraction and crystallography.
1927 - Two groups demonstrated electron diffraction, the first the Davisson–Germer experiment,[77][78][79][80] the other by George Paget Thomson and Alexander Reid.[81] Alexander Reid, who was Thomson's graduate student, performed the first experiments,[82] but he died soon after in a motorcycle accident.[83]
1928 - Felix Machatschki, working with Goldschmidt, showed that silicon can be replaced by aluminium in feldspar structures.[84]
1928 - Kathleen Lonsdale used x-rays to determine that the structure of benzene is a flat hexagonal ring.[85]
1928 - Hans Bethe published the first non-relativistic explanation of electron diffraction based upon Schrödinger's equation, which remains central to all further analysis.[87]
1931 - Paul Ewald and Carl Hermann published the first volume of the Strukturbericht (Structure Report),[95] which established the systematic classification of crystal structure prototypes, also known as the Strukturbericht designation.
1932 - W. H. Zachariasen published an article entitled The atomic arrangement in glass,[97] which perhaps had more influence than any other published work on the science of glass.
1934 - Arthur Patterson introduced the Patterson function which uses diffraction intensities to determine the interatomic distances within a crystal, setting limits to the possible phase values for the reflected x-rays.[101]
1934 - Martin Julian Buerger developed the equi-inclination Weissenberg X-ray camera. Buerger invented the precession camera in 1942.[102]
1935 - First publication of the International tables for the determination of crystal structures edited by Carl Hermann.[109] The successor volumes are currently published by IUCr as the International tables for crystallography.[110]
1936 - Peter Debye won the Nobel Prize in Chemistry "for his contributions to our knowledge of molecular structure through his investigations on dipole moments and on the diffraction of X-rays and electrons in gases."[113]
1952 - David Sayre suggested that the phase problem could be more easily solved by having at least one more intensity measurement beyond those of the Bragg peaks in each dimension. This concept is understood today as oversampling.[144]
1954 - Ukichiro Nakaya's book Snow Crystals: Natural and Artificial, dedicated to the modern study of snow crystals, is published.[153]
1954 - Linus Pauling won the Nobel Prize in Chemistry "for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances"."[154]
1956 - James Menter published the first electron microscope images showing the lattice structure of a material.[156]
1958 - William Burton Pearson published A Handbook of Lattice Spacings and Structures of Metals and Alloys,[157] where he introduced the Pearson symbols for crystal structure types.
1962 - Max Perutz and John Kendrew shared the Nobel Prize for Chemistry "for their studies of the structures of globular proteins", namely haemoglobin and myoglobin respectively[167]
1962 - James Watson, Francis Crick and Maurice Wilkins won the Nobel Prize in Physiology or Medicine "for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material," specifically for their determination of the structure of DNA.[168]
1963 - Jürg Waser introduced restrained least square method, also known as regularized least squares, for crystallographic structure fitting.[170]
1964 - Dorothy Hodgkin won the Nobel Prize for Chemistry "for her determinations by X-ray techniques of the structures of important biochemical substances." The substances included penicillin and vitamin B12.[171]
1968 - Aaron Klug and David DeRosier used electron microscopy to visualise the structure of the tail of bacteriophage T4, a common virus, thus signalling a breakthrough in macromolecular structure determination.[179]
1971 - Establishment of the Protein Data Bank (PDB). At PDB, Edgar Meyer develops the first general software tools for handling and visualizing protein structural data.[184][185]
1972 - The first quantitative matching of atomic scale images and dynamical simulations was published by J. G. Allpress, E. A. Hewat, A. F. Moodie and J. V. Sanders.[188]
1972 - Michael Glazer established the classification of octahedral tilting patterns in perovskite crystal structures, later also known as the Glazer tilts.[189][190]
1973 - Geoffrey Wilkinson and Ernst Fischer shared the Nobel Prize in Chemistry "for their pioneering work, performed independently, on the chemistry of the organometallic, so called sandwich compounds", specifically the structure of ferrocene.[192]
1976 - Boris Delaunay, building on his work in the 1930s,[194] proved that the regularity of a system of points, an (r, R) system or Delone set, can be established by postulating the points' congruence within a sphere of a defined finite radius.[195]
1976 - William Lipscomb won the Nobel Prize in Chemistry "for his studies on the structure of boranes illuminating problems of chemical bonding."[196]
1982 - Aaron Klug won the Nobel Prize in Chemistry "for his development of crystallographic electron microscopy and his structural elucidation of biologically important nucleic acid-protein complexes."[203]
1984 - A team led by Dan Shechtman also involving Ilan Blech, Denis Gratias, and John W. Cahn discovered quasicrystals in a metallic alloy. These structures have no unit cell and no periodic translational order but have long-range bond orientational order, which generates a defined diffraction pattern.[209]
1984 - Aaron Klug and his colleagues provided an advance in determining the structure of protein–nucleic acid complexes when they solved the structure of the 206-kDa nucleosome core particle.[210]
1985 - Jerome Karle shared the Nobel Prize in Chemistry with Herbert A. Hauptman "for their outstanding achievements in the development of direct methods for the determination of crystal structures". Karle developed the theoretical basis for multiple-wavelength anomalous diffraction (MAD).[211]
1985 - Kunio Takanayagi led a team which solved the structure of the 7x7 reconstruction of the silicon (111) surface using Patterson function methods with ultra-high vacuumelectron diffraction.[213][214] This surface structure had defeated many prior attempts.
1986 - Ernst Ruska shared the Nobel Prize in Physics "for his fundamental work in electron optics, and for the design of the first electron microscope".[215]
1987 - John M. Cowley and Alexander F. Moodie shared the first IUCrEwald Prize "for their outstanding achievements in electron diffraction and microscopy. They carried out pioneering work on the dynamical scattering of electrons and the direct imaging of crystal structures and structure defects by high-resolution electron microscopy. The physical optics approach used by Cowley and Moodie takes into account many hundreds of scattered beams, and represents a far-reaching extension of the dynamical theory for X-rays, first developed by P.P. Ewald".[216]
1987 - Don Craig Wiley and Jack L. Strominger solved the structure of the soluble portion of a class I MHC molecule known as HLA-A2.[217] This structure revealed the presence of a pocket which holds the antigenicpeptide, which is recognized by the receptors of T cells only when firmly bound to the MHC product and presented at the surface of an infected cell. This structure strongly influenced the concept of T cell recognition in future work.[218]
1989 - Gautam R. Desiraju defined crystal engineering as "the understanding of intermolecular interactions in the context of crystal packing and the utilization of such understanding in the design of new solids with desired physical and chemical properties."[220]
1991 - Georg E. Schulz and colleagues reported the structure of a bacterial porin, a membrane protein with a cylindrical shape (a ‘β-barrel').[221]
1991 - Sumio Iijima used electron diffraction to determine the structure of carbon nanotubes.[224]
1992 - The International Union of Crystallography changed the IUCr's definition of a crystal to "any solid having an essentially discrete diffraction pattern" thus formally recognizing quasicrystals.[225]
1992 - First release of the CNS software package by Axel T. Brunger. CNS is an extension of X-PLOR released in 1987,[226] and is used for solving structures based on X-ray diffraction or solution NMR data.[227]
1994 - Bertram Brockhouse and Clifford Shull shared the Nobel Prize in Physics "for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter". Specifically, Brockhouse "for the development of neutron spectroscopy" and Shull "for the development of the neutron diffraction technique."[230]
1994 - Philip Coppens led a team of researchers to uncover the transient structure of sodium nitroprusside, a first example in X-ray excited-state crystallography.[231]
1997 - Paul D. Boyer and John E. Walker shared one half of the Nobel Prize in Chemistry "for their elucidation of the enzymatic mechanism underlying the synthesis of adenosine triphosphate (ATP)" Walker determined the crystal structure of ATP synthase, and this structure confirmed a mechanism earlier proposed by Boyer, mainly on the basis of isotopic studies.[236]
1997 - Nobuo Niimura led a team that first used a neutron image plate for structure determination of lysozyme at the Institut Laue–Langevin.[237]
2001 - Harry F. Noller's group published the 5.5-Å structure of the complete Thermus thermophilus 70S ribosome. This structure revealed that the major functional regions of the ribosome were based on RNA, establishing the primordial role of RNA in translation.[248]
2001 - Roger Kornberg's group published the 2.8-Å structure of Saccharomyces cerevisiae RNA polymerase. The structure allowed both transcription initiation and elongation mechanisms to be deduced. Simultaneously, this group reported the structure of free RNA polymerase II, which contributed towards the eventual visualisation of the interaction between DNA, RNA, and the ribosome.[249][250]
2003 - Raimond Ravelli et al. demonstrated X-ray radiation damage-induced phasing method for structure determination.[251]
2007 - Ute Kolb and co-workers developed automated diffraction tomography for electron crystallography by combining diffraction and tomography within a transmission electron microscope.[253][254][255]
2007 - Two X-ray crystal structures of a GPCR, the human β2 adrenergic receptor, were published. Because many drugs elicit their biological effect(s) by binding to a GPCR, the structures of these and other GPCRs may be used to develop efficacious drugs with few side effects.[256][257]
2009 - Judith Howard and her collaborators created the Olex2 crystallographic software package.[262]
2011 - Gustaaf Van Tendeloo led a team including Sandra Van Aert, Kees Joost Batenburg et. al. determined the 3D atomic positions of a silver nanoparticle using electron tomography.[263]
2014 - Carmelo Giacovazzo published Phasing in Crystallography: A Modern Perspective, a comprehensive opus on phasing methods in X-ray and electron crystallography.[269]
2017 - Lukas Palatinus and co-workers used dynamical structure refinement to resolve hydrogen atom positions in nanocrystals using electron diffraction.[271][272]
2021 - Kenneth G. Libbrecht published the book Snow Crystals: A Case Study in Spontaneous Structure Formation, summarizing his decade-spanning work on the subject for engineering conditions for designer ice crystals.[279][280]
2022 - Leonid Dubrovinsky, Igor A. Abrikosov, and Natalia Dubrovinskaia led a team that demonstrates high-pressure crystallography in the terapascal regime.[281]
2024 - A team led by Anders Madsen developed a deep learning model, PhAI, to solve crystallographic phase problem for small molecules.[282]
^Macquer, P.-J. (1766). Dictionnaire de Chymie, Lacombe, Paris
^Romé de l'Isle, J.-B. L. (1772). Essai de Cristallographie, Knapen & Delaguete, Paris
^Brock, H. (1910). The Catholic Encyclopedia, Robert Appleton Company, New York.
^Haüy, R.J. (1782). Sur la structure des cristaux de grenat, Observations sur la physique, sur l'histoire naturelle et sur les arts, XIX, 366-370
^Haüy, R.J. (1782). Sur la structure des cristaux des spaths calcaires, Observations sur la physique, sur l'histoire naturelle et sur les arts. XX, 33-39
^Romé de l'Isle, J.-B. L. (1783). Cristallographie ou description des formes propres à tous les corps du règne minéral dans l'état de combinaison saline, pierreuse ou métallique, Paris
^Haüy, R.J. (1784). Essai d'une théorie sur la structure des cristaux, appliquée à plusieurs genres de substances cristallisées, Chez Gogué et Née de La Rochelle, Paris
^Haüy, R.J. (1795). Leçons de Physique, in Séances des Ecoles normales ..., L. Reynier, Paris
^Haüy, R.J. (1801). Traité de Minéralogie, Chez Louis, Paris
^Haüy, R.J. (1822). Traité de Cristallographie, Bachelier et Huzard, Paris
^de Dolomieu, Déodat (1801). Sur la philosophie minéralogique et sur l'espèce minéralogique, Paris
^Haüy, R.J. (1815). Memoire sur une loi de cristallisation appelée loi de symmétrie, Mémoires du Muséum d'Histoire naturelle 1, 81-101, 206-225, 273-298, 341-352
^Weiss, C.S. (1815). Uebersichtliche Darstellung der versschiedenen naturlichen Abteilungen der Kristallisations-Systeme, Abh. K. Akad. Wiss., Berlin. 289-337, 1814-1815.
^Miller, W.H. (1839). A Treatise on Crystallography, Deighton-Parker, Cambridge, London
^Delafosse, G. (1840). De la Structure des Cristaux [...] sur l'Importance de l'etude de la Symétrie dans les différentes Branches de l'Histoire Naturelle [...], Fain and Thunot, Paris
^Frankenheim, M.L. (1842). System der Kristalle. Nova Acta Acad. Naturae Curiosorum, 19, (2), 469-660
^Pasteur, L. (1848). Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire (Memoir on the relationship that can exist between crystalline form and chemical composition, and on the cause of rotary polarization), Comptes rendus de l'Académie des sciences (Paris), 26, 535–538
^Bravais, A. (1850). Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l'espace, J. l'Ecole Polytechnique 19, 1-128
^Bravais, M.A. (1949). On the systems formed by points regularly distributed on a plane or in space, English translation by Shaler, A.J., Crystallographic Society of America, Michigan. OCLC1123365404
^Gadolin, A. (1871). Mémoire sur la déduction d'un seul principe de tous les systems cristallographiques avec leurs subdivisions (Memoir on the deduction from a single principle of all the crystal systems with their subdivisions), Acta Soc. Sci. Fennicae., 9, 1-71
^Authier, A. (2013). Early days of x-ray crystallography, International Union of Crystallography Texts on Crystallography, Oxford University Press, Oxford, p.83 ISBN9780198754053
^Lehmann, O. (1889). "Über fliessende Krystalle". Zeitschrift für Physikalische Chemie. 4U: 462–472. doi:10.1515/zpch-1889-0434.
^Fedorov, E. (1891). The symmetry of regular systems of figures, Zap. Miner. Obshch. (Trans. Miner. Soc. Saint Petersburg), 28, 1-146
^Schoenflies, A. (1891). Kristallsysteme und Kristallstruktur. B. G. Teubner, Leipzig
^Barlow W. (1894). Über die Geometrischen Eigenschaften homogener starrer Strukturen und ihre Anwendung auf Krystalle (On the geometrical properties of homogeneous rigid structures and their application to crystals), Zeitschrift für Krystallographie und Minerologie, 23, 1–63.
^Barkla, C.G. (1905). "XIII. Polarised röntgen radiation". Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. 204 (372–386): 467–479. doi:10.1098/rsta.1905.0013. ISSN0264-3952.
^Laue, Max von (1912). Eine quantitative prüfung der theorie für die interferenz-erscheinungen bei Röntgenstrahlen, Sitzungsberichte der Kgl. Bayer. Akad. Der Wiss., 363–373
^Bragg, W.L. (1913). The diffraction of short electromagnetic waves by a crystal, Proc. Cambridge Phil. Soc., 17, 43-57
^Gonell, H. W.; Mark, H. (1923). "Röntgenographische Bestimmung der Strukturformel des Hexamethylentetramins". Zeitschrift für Physikalische Chemie. 107U: 181–218. doi:10.1515/zpch-1923-10715.
^de Broglie, Louis Victor. "On the Theory of Quanta"(PDF). Foundation of Louis de Broglie (English translation by A.F. Kracklauer, 2004. ed.). Retrieved 25 February 2023.
^Hermann, C. (1928). "XVI. Zur systematischen Strukturtheorie". Zeitschrift für Kristallographie - Crystalline Materials. 68 (1–6): 257–287. doi:10.1524/zkri.1928.68.1.257.
^Mauguin, Ch. (1931). "Sur le symbolisme des groupes de repetition on de symetrie des assemblages cristallins". Zeitschrift für Kristallographie - Crystalline Materials. 76 (1–6): 542–558. doi:10.1524/zkri.1931.76.1.542.
^Pauling, Linus (1929). "The Principles Determining the Structure of Complex Ionic Crystals". Journal of the American Chemical Society. 51 (4): 1010–1026. doi:10.1021/ja01379a006.
^Bragg, W. L. (1930). "XXV. The Structure of Silicates". Zeitschrift für Kristallographie - Crystalline Materials. 74 (1–6): 237–305. doi:10.1524/zkri.1930.74.1.237.
^Mark, Herman; Wiel, Raymond (1930). "Die ermittlung von molekülstrukturen durch beugung von elektronen an einem dampfstrahl". Zeitschrift für Elektrochemie und angewandte physikalische Chemie. 36 (9): 675–676. doi:10.1002/bbpc.19300360921. S2CID178706417.
^Ewald, Paul Peter; Hermann, C (1931). Strukturbericht, 1913-1928 (in German). Leipzig: Akademische Verlagsgesellschaft. OCLC29150452.
^Laves, F. (1931). "Ebenenteilung und Koordinationszahl". Zeitschrift für Kristallographie - Crystalline Materials. 78 (1–6): 208–241. doi:10.1524/zkri.1931.78.1.208.
^Zachariasen, W. H. (1932). "The Atomic Arrangement in Glass". Journal of the American Chemical Society. 54 (10): 3841–3851. doi:10.1021/ja01349a006.
^Patterson, A. L. (1934). "A Fourier Series Method for the Determination of the Components of Interatomic Distances in Crystals". Physical Review. 46 (5): 372–376. Bibcode:1934PhRv...46..372P. doi:10.1103/PhysRev.46.372.
^Beevers, CA; Lipson, H. (1985). "A Brief History of Fourier Methods in Crystal-structure Determination". Australian Journal of Physics. 38 (3): 263. Bibcode:1985AuJPh..38..263B. doi:10.1071/PH850263.
^Laves, F. and Löhberg, K. (1934). Die Kristallstruktur von intermetallischen Verbindungen der Formel AB2, Nachr. Ges. Wiss. Göttingen 1, 59-66.
^Laves, F. and Witte, H. (1935). Die Kristallstruktur des MgNi2 und seine Beziehungen zu den Typen des MgCu2 und MgZn2, Metallwirtschaft, 14, 645-649.
^Schulze, Gustav E. R. (1939). "Zur Kristallchemie der intermetallischen AB2-Verbindungen (Laves-Phasen)". Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie. 45 (12): 849–865. doi:10.1002/bbpc.19390451202.
^Barrett, C. and Massalski, T.B. (1980). Structure of metals, 3rd rev. ed., Pergamon Press, Oxford, 256-259. ISBN9780080261713
^Hermann, C. (ed.) (1935). Internationale Tabellen zur Bestimmung von Kristallstrukturen, 2 vols., Gebrüder, Berlin, 692pp. OCLC2131165
^"X-Ray studies of the structure of hair, wool, and related fibres. II.- the molecular structure and elastic properties of hair keratin". Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. 232 (707–720): 333–394. 1933. doi:10.1098/rsta.1934.0010.
^Astbury, W. T.; Sisson, Wayne A. (1935). "X-ray studies of the structure of hair, wool, and related fibres - III—The configuration of the keratin molecule and its orientation in the biological cell". Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences. 150 (871): 533–551. Bibcode:1935RSPSA.150..533A. doi:10.1098/rspa.1935.0121.
^Goodman, P.; Lehmpfuhl, G. (1968). "Observation of the breakdown of Friedel's law in electron diffraction and symmetry determination from zero-layer interactions". Acta Crystallographica Section A. 24 (3): 339–347. Bibcode:1968AcCrA..24..339G. doi:10.1107/S0567739468000677.
^Bijvoet, J. M.; Peerdeman, A. F.; Van Bommel, A. J. (1951). "Determination of the Absolute Configuration of Optically Active Compounds by Means of X-Rays". Nature. 168 (4268): 271–272. Bibcode:1951Natur.168..271B. doi:10.1038/168271a0.
^Wilkinson, Geoffrey (1975). "The iron sandwich. A recollection of the first four months". Journal of Organometallic Chemistry. 100: 273–278. doi:10.1016/S0022-328X(00)88947-0.
^Wilkins, M. H. F.; Stokes, A. R.; Wilson, H. R. (1953). "Molecular Structure of Nucleic Acids: Molecular Structure of Deoxypentose Nucleic Acids". Nature. 171 (4356): 738–740. Bibcode:1953Natur.171..738W. doi:10.1038/171738a0. PMID13054693.
^Kendrew, J. C.; Dickerson, R. E.; Strandberg, B. E.; Hart, R. G.; Davies, D. R.; Phillips, D. C.; Shore, V. C. (1960). "Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution". Nature. 185 (4711): 422–427. Bibcode:1960Natur.185..422K. doi:10.1038/185422a0. PMID18990802.
^Perutz, M. F.; Rossmann, M. G.; Cullis, ANN F.; Muirhead, Hilary; Will, Georg; North, A. C. T. (1960). "Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis". Nature. 185 (4711): 416–422. Bibcode:1960Natur.185..416P. doi:10.1038/185416a0. PMID18990801.
^Karle, I. L.; Karle, J. (1963). "An application of a new phase determination procedure to the structure of cyclo(hexaglycyl)demihydrate". Acta Crystallographica. 16 (10): 969–975. Bibcode:1963AcCry..16..969K. doi:10.1107/S0365110X63002607.
^Blake, C. C. F.; Koenig, D. F.; Mair, G. A.; North, A. C. T.; Phillips, D. C.; Sarma, V. R. (1965). "Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 Å Resolution". Nature. 206 (4986): 757–761. Bibcode:1965Natur.206..757B. doi:10.1038/206757a0. PMID5891407.
^Johnson, Louise N.; Phillips, D. C. (1965). "Structure of Some Crystalline Lysozyme-Inhibitor Complexes Determined by X-Ray Analysis at 6 Å Resolution". Nature. 206 (4986): 761–763. Bibcode:1965Natur.206..761J. doi:10.1038/206761a0. PMID5840126.
^Blundell, T. L.; Cutfield, J. F.; Cutfield, S. M.; Dodson, E. J.; Dodson, G. G.; Hodgkin, D. C.; Mercola, D. A.; Vijayan, M. (1971). "Atomic Positions in Rhombohedral 2-Zinc Insulin Crystals". Nature. 231 (5304): 506–511. Bibcode:1971Natur.231..506B. doi:10.1038/231506a0. PMID4932997.
^Kim, S. H.; Quigley, G. J.; Suddath, F. L.; McPherson, A.; Sneden, D.; Kim, J. J.; Weinzierl, J.; Rich, Alexander (1973). "Three-Dimensional Structure of Yeast Phenylalanine Transfer RNA: Folding of the Polynucleotide Chain". Science. 179 (4070): 285–288. Bibcode:1973Sci...179..285K. doi:10.1126/science.179.4070.285. PMID4566654.
^Karle, Jerome (1980). "Some developments in anomalous dispersion for the structural investigation of macromolecular systems in biology". International Journal of Quantum Chemistry. 18: 357–367. doi:10.1002/qua.560180734.
^Helliwell, John R. (2001). "New opportunities in biological and chemical crystallography". Journal of Synchrotron Radiation. 9 (Pt 1): 1–8. doi:10.1107/S0909049501018465. PMID11779939.
^Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W. (1984). "Metallic Phase with Long-Range Orientational Order and No Translational Symmetry". Physical Review Letters. 53 (20): 1951–1953. Bibcode:1984PhRvL..53.1951S. doi:10.1103/PhysRevLett.53.1951.
^Richmond, T. J.; Finch, J. T.; Rushton, B.; Rhodes, D.; Klug, A. (1984). "Structure of the nucleosome core particle at 7 Å resolution". Nature. 311 (5986): 532–537. Bibcode:1984Natur.311..532R. doi:10.1038/311532a0. PMID6482966.
^Deisenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. (1985). "Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution". Nature. 318 (6047): 618–624. Bibcode:1985Natur.318..618D. doi:10.1038/318618a0. PMID22439175.
^Bjorkman, P. J.; Saper, M. A.; Samraoui, B.; Bennett, W. S.; Strominger, J. L.; Wiley, D. C. (1987). "Structure of the human class I histocompatibility antigen, HLA-A2". Nature. 329 (6139): 506–512. Bibcode:1987Natur.329..506B. doi:10.1038/329506a0. PMID3309677.
^Brünger, A. T.; Adams, P. D.; Clore, G. M.; Delano, W. L.; Gros, P.; Grosse-Kunstleve, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; Warren, G. L. (1998). "Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination". Acta Crystallographica Section D. 54 (5): 905–921. Bibcode:1998AcCrD..54..905B. doi:10.1107/s0907444998003254. PMID9757107.
^Abrahams, Jan Pieter; Leslie, Andrew G. W.; Lutter, René; Walker, John E. (1994). "Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria". Nature. 370 (6491): 621–628. doi:10.1038/370621a0. PMID8065448.
^Neutze, Richard; Wouts, Remco; Van Der Spoel, David; Weckert, Edgar; Hajdu, Janos (2000). "Potential for biomolecular imaging with femtosecond X-ray pulses". Nature. 406 (6797): 752–757. Bibcode:2000Natur.406..752N. doi:10.1038/35021099. PMID10963603.
^Yusupov, Marat M.; Yusupova, Gulnara Zh.; Baucom, Albion; Lieberman, Kate; Earnest, Thomas N.; Cate, J. H. D.; Noller, Harry F. (2001). "Crystal Structure of the Ribosome at 5.5 Å Resolution". Science. 292 (5518): 883–896. Bibcode:2001Sci...292..883Y. doi:10.1126/science.1060089. PMID11283358.
^Rasmussen, Søren G. F.; Choi, Hee-Jung; Rosenbaum, Daniel M.; Kobilka, Tong Sun; Thian, Foon Sun; Edwards, Patricia C.; Burghammer, Manfred; Ratnala, Venkata R. P.; Sanishvili, Ruslan; Fischetti, Robert F.; Schertler, Gebhard F. X.; Weis, William I.; Kobilka, Brian K. (2007). "Crystal structure of the human β2 adrenergic G-protein-coupled receptor". Nature. 450 (7168): 383–387. doi:10.1038/nature06325. PMID17952055.
^Giacovazzo, Carmelo (2014). Phasing in crystallography: a modern perspective. IUCr texts on crystallography. Oxford: Oxford university press. ISBN978-0-19-968699-5.
Bacon, G. E., ed. (1986). Fifty years of neutron diffraction: the advent of neutron scattering. Bristol: A. Hilger, published with the assistance of the International Union of Crystallography. ISBN978-0-85274-587-8.