Time derivative

A time derivative is a derivative of a function with respect to time, usually interpreted as the rate of change of the value of the function.[1] The variable denoting time is usually written as .

Notation

A variety of notations are used to denote the time derivative. In addition to the normal (Leibniz's) notation,

A very common short-hand notation used, especially in physics, is the 'over-dot'. I.E.

(This is called Newton's notation)

Higher time derivatives are also used: the second derivative with respect to time is written as

with the corresponding shorthand of .

As a generalization, the time derivative of a vector, say:

is defined as the vector whose components are the derivatives of the components of the original vector. That is,

Use in physics

Time derivatives are a key concept in physics. For example, for a changing position , its time derivative is its velocity, and its second derivative with respect to time, , is its acceleration. Even higher derivatives are sometimes also used: the third derivative of position with respect to time is known as the jerk. See motion graphs and derivatives.

A large number of fundamental equations in physics involve first or second time derivatives of quantities. Many other fundamental quantities in science are time derivatives of one another:

and so on.

A common occurrence in physics is the time derivative of a vector, such as velocity or displacement. In dealing with such a derivative, both magnitude and orientation may depend upon time.

Example: circular motion

Relation between Cartesian coordinates (x,y) and polar coordinates (r,θ).

For example, consider a particle moving in a circular path. Its position is given by the displacement vector , related to the angle, θ, and radial distance, r, as defined in the figure:

For this example, we assume that θ = t. Hence, the displacement (position) at any time t is given by

This form shows the motion described by r(t) is in a circle of radius r because the magnitude of r(t) is given by

using the trigonometric identity sin2(t) + cos2(t) = 1 and where is the usual Euclidean dot product.

With this form for the displacement, the velocity now is found. The time derivative of the displacement vector is the velocity vector. In general, the derivative of a vector is a vector made up of components each of which is the derivative of the corresponding component of the original vector. Thus, in this case, the velocity vector is:

Thus the velocity of the particle is nonzero even though the magnitude of the position (that is, the radius of the path) is constant. The velocity is directed perpendicular to the displacement, as can be established using the dot product:

Acceleration is then the time-derivative of velocity:

The acceleration is directed inward, toward the axis of rotation. It points opposite to the position vector and perpendicular to the velocity vector. This inward-directed acceleration is called centripetal acceleration.

In differential geometry

In differential geometry, quantities are often expressed with respect to the local covariant basis, , where i ranges over the number of dimensions. The components of a vector expressed this way transform as a contravariant tensor, as shown in the expression , invoking Einstein summation convention. If we want to calculate the time derivatives of these components along a trajectory, so that we have , we can define a new operator, the invariant derivative , which will continue to return contravariant tensors:[2]

where (with being the jth coordinate) captures the components of the velocity in the local covariant basis, and are the Christoffel symbols for the coordinate system. Note that explicit dependence on t has been repressed in the notation. We can then write:

as well as:

In terms of the covariant derivative, , we have:

Use in economics

In economics, many theoretical models of the evolution of various economic variables are constructed in continuous time and therefore employ time derivatives.[3]: ch. 1-3  One situation involves a stock variable and its time derivative, a flow variable. Examples include:

Sometimes the time derivative of a flow variable can appear in a model:

  • The growth rate of output is the time derivative of the flow of output divided by output itself.
  • The growth rate of the labor force is the time derivative of the labor force divided by the labor force itself.

And sometimes there appears a time derivative of a variable which, unlike the examples above, is not measured in units of currency:

  • The time derivative of a key interest rate can appear.
  • The inflation rate is the growth rate of the price level—that is, the time derivative of the price level divided by the price level itself.

See also

References

  1. ^ Chiang, Alpha C., Fundamental Methods of Mathematical Economics, McGraw-Hill, third edition, 1984, ch. 14, 15, 18.
  2. ^ Grinfeld, Pavel. "Tensor Calculus 6d: Velocity, Acceleration, Jolt and the New δ/δt-derivative". YouTube. Archived from the original on 2021-12-13.
  3. ^ See for example Romer, David (1996). Advanced Macroeconomics. McGraw-Hill. ISBN 0-07-053667-8.

Read other articles:

Dives in misericordiaLatin: Kaya dalam Kemurahan HatiSurat ensiklik dari Paus Yohanes Paulus II Tanggal30 November 1980ArgumenTentang Kerahiman IlahiNomor ensiklik2 dari 14 dari kepausanNaskahDalam LatinDalam bahasa Inggris←Redemptor hominis Laborem exercens→ Dives in Misericordia (Bahasa Latin untuk Kaya dalam Kemurahan Hati) adalah nama dari ensiklik kedua yang ditulis oleh Paus Yohanes Paulus II. Ensiklik ini merupakan sebuah pengamatan teologis yang mendalam atas peran kemurahan hati ...

 

В Википедии есть статьи о других людях с фамилией Бэтти. Майкл Бэттиангл. John Michael Batty Дата рождения 11 января 1945(1945-01-11) (79 лет) Место рождения Ливерпуль Страна  Великобритания Научная сфера геоурбанистика Место работы Университетский колледж Лондона Альма-матер Манче�...

 

العلاقات الرواندية السيراليونية رواندا سيراليون   رواندا   سيراليون تعديل مصدري - تعديل   العلاقات الرواندية السيراليونية هي العلاقات الثنائية التي تجمع بين رواندا وسيراليون.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين:...

Charter school in the United StatesThe Renaissance Charter SchoolLocation35–59 81st StreetQueens, New York 11372United StatesCoordinates40°45′00″N 73°53′07″W / 40.7499°N 73.8852°W / 40.7499; -73.8852InformationTypeCharterMottoDeveloping Leaders for the Renaissance of New York[2]Established1993NCES School ID360005904803[1]PrincipalStacey GauthierFaculty39.39 (on FTE basis)[1]GradesK–12Enrollment~590[1] (2019–20)Stu...

 

ChioΧίοςL'isola vista dal satelliteGeografia fisicaLocalizzazioneMare Egeo Coordinate38°24′N 26°01′E / 38.4°N 26.016667°E38.4; 26.016667Coordinate: 38°24′N 26°01′E / 38.4°N 26.016667°E38.4; 26.016667 Superficie842,5 km² Geografia politicaStato Grecia Divisione 1Egeo Settentrionale Divisione 2Chio Centro principaleChio DemografiaAbitanti51.936 (2001) CartografiaChio voci di isole presenti su Wikipedia Chio[1], anticamente d...

 

Roccabruna commune di Italia Tempat Negara berdaulatItaliaRegion di ItaliaPiedmontProvinsi di ItaliaProvinsi Cuneo NegaraItalia Ibu kotaRoccabruna PendudukTotal1.522  (2023 )GeografiLuas wilayah24,3 km² [convert: unit tak dikenal]Ketinggian700 m Berbatasan denganCartignano Dronero Busca Villar San Costanzo Melle San Damiano Macra SejarahSanto pelindungMaria Diangkat ke Surga Informasi tambahanKode pos12020 Zona waktuUTC+1 UTC+2 Kode telepon0171 ID ISTAT004187 Kode kadaster ItaliaH3...

Part of a series onAfrican Americans in Omaha Historic places Notable people Neighborhood Museum Music Racial tension Timeline of racial tension Riots and civil unrest Civil Rights Movement vte The civil rights movement in Omaha, Nebraska, has roots that extend back until at least 1912. With a history of racial tension that starts before the founding of the city, Omaha has been the home of numerous overt efforts related to securing civil rights for African Americans since at least the 1870s....

 

Consumado. El consomé (del francés consommé,[1]​ y a su vez del verbo consommer: consumir en español; significa consumido, reducido) es un caldo concentrado elaborado con carnes que se suele clarificar al final de la cocción para que quede transparente y sin impurezas. Por regla general se sirve caliente al comienzo de la comida. Origen Se considera un plato típico de la cocina francesa, aunque según Dionisio Pérez Gutiérrez, la receta procede de España y llegó a Francia al s...

 

 本表是動態列表,或許永遠不會完結。歡迎您參考可靠來源來查漏補缺。 潛伏於中華民國國軍中的中共間諜列表收錄根據公開資料來源,曾潛伏於中華民國國軍、被中國共產黨聲稱或承認,或者遭中華民國政府調查審判,為中華人民共和國和中國人民解放軍進行間諜行為的人物。以下列表以現今可查知時間為準,正確的間諜活動或洩漏機密時間可能早於或晚於以下所歸�...

Municipality in GreeceAmyntaio ΑμύνταιοMunicipalityChurch in central Amyntaio.AmyntaioLocation within the region Coordinates: 40°41′N 21°41′E / 40.683°N 21.683°E / 40.683; 21.683CountryGreeceAdministrative regionWest MacedoniaRegional unitFlorinaArea • Municipality589.4 km2 (227.6 sq mi) • Municipal unit249.9 km2 (96.5 sq mi)Elevation589 m (1,932 ft)Population (2021)[1] �...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Spanish Australians – news · newspapers · books · scholar · JSTOR (June 2014) (Learn how and when to remove this message) Ethnic group Spanish AustraliansHispano-australianosTotal population92,952 (by claimed ancestry, 2011)[1] 15,976 (ancestry by birth...

 

Eleazar San Eleazar de AnzerOrigen HebreoGénero MasculinoSantoral 23 de agostoSignificado Dios es mi ayuda, Dios ha ayudadoArtículos en Wikipedia Todas las páginas que comienzan por «Eleazar».[editar datos en Wikidata] Eleazar es un nombre propio masculino y femenino[1]​ , en español. Procede del hebreo אֶלְעָזָר (Elʻāzār) y significa «Dios es mi ayuda». Una variante de este nombre es Eliezer por lo que es muy común confundirlo ya que es un nombre bíblico...

  لمعانٍ أخرى، طالع محرك بحث (توضيح). محرك البحث (بالإنجليزية: Search Engine)‏ هو نظام لاسترجاع المعلومات صمم للمساعدة على البحث عن المعلومات المخزنة على أي نظام حاسوبي.[1] تعرض نتائج البحث عادة على شكل قائمة لأماكن تواجد المعلومات ومرتبة وفق معايير معينة. تسمح محركات الب...

 

Questa voce o sezione sull'argomento inventori italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Angelo Moriondo Angelo Moriondo (Torino, 6 giugno 1851 – Marentino, 31 maggio 1914) è stato un inventore e imprenditore italiano noto per aver realizzato la prima macchina da caffè espresso moderna, brevettata il 16 maggio 1884 e presentata all'Exp...

 

1975 live album by Miles DavisAghartaLive album by Miles DavisReleasedAugust 1975RecordedFebruary 1, 1975VenueFestival Hall (Osaka)Genre Jazz-rock funk rock avant-garde ambient Length97:34LabelCBS/SonyProducerTeo MaceroMiles Davis release chronology Get Up with It(1974) Agharta(1975) Live at the Plugged Nickel(1976) Miles Davis live recording chronology Dark Magus(1974) Agharta(1975) Pangaea(1975) Alternate cover1976 North American edition Agharta is a 1975 live double album by Ameri...

Impact of COVID-19 on the LGBTQ+ community Part of a series on theCOVID-19 pandemicScientifically accurate atomic model of the external structure of SARS-CoV-2. Each ball is an atom. COVID-19 (disease) SARS-CoV-2 (virus) Cases Deaths Timeline 2019 2020 January responses February responses March responses April responses May responses June responses July responses August responses September responses October responses November responses December responses 2021 January responses February respon...

 

French orchestra conductor This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Jacques Hélian – news · newspapers · books · scholar · JSTOR (July 2013) (Learn how and when to remove this message) Jacques Hélian Jacques Mikaël Der Mikaëlian better known as Jacques Hélian (born in Paris, 7 June 1912 - died 29...

 

جائزة ألمانيا الكبرى 1987 (بالإنجليزية: Mobil German Grand Prix)‏  السباق 8 من أصل 16 في بطولة العالم لسباقات الفورمولا واحد موسم 1987 السلسلة بطولة العالم لسباقات فورمولا 1 موسم 1987  البلد ألمانيا  التاريخ 26 يوليو 1987 مكان التنظيم حلبة هوكنهايم، ألمانيا الغربية طول المسار 6.797 كيل�...

Hammersley Wild AreaIUCN category III (natural monument or feature)Location of Hammersley Wild Area in PennsylvaniaLocationPotter and Clinton, Pennsylvania, United StatesCoordinates41°30′47″N 77°52′48″W / 41.51306°N 77.88000°W / 41.51306; -77.88000Area30,253 acres (122.43 km2)[1]Established2004[1]Named forHammersley Fork, a tributary of Kettle CreekGoverning bodyPennsylvania Department of Conservation and Natural Resources Hammersl...

 

العلاقات المغربية الميانمارية المغرب ميانمار   المغرب   ميانمار تعديل مصدري - تعديل   العلاقات المغربية الميانمارية هي العلاقات الثنائية التي تجمع بين المغرب وميانمار.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه الم...