Template talk:Star polyhedron navigator

This list was split from Template:Convex polyhedron navigator

I'm not very sure about the usefulness of all these complicated named in one list. I'd prefer a visual list, even like a single bitmap with a matrix of pictures with a link mapping to each form, but don't know if you can do that in Wikipedia. Tom Ruen (talk) 03:00, 9 September 2009 (UTC)[reply]__DTELLIPSISBUTTON__{"threadItem":{"timestamp":"2009-09-09T03:00:00.000Z","author":"Tomruen","type":"comment","level":1,"id":"c-Tomruen-2009-09-09T03:00:00.000Z","replies":["c-Professor_Fiendish-2009-09-09T05:36:00.000Z-Tomruen-2009-09-09T03:00:00.000Z"],"displayName":"Tom Ruen"}}-->

I think you can do that! Professor M. Fiendish, Esq. 05:36, 9 September 2009 (UTC)[reply]__DTELLIPSISBUTTON__{"threadItem":{"timestamp":"2009-09-09T05:36:00.000Z","author":"Professor Fiendish","type":"comment","level":2,"id":"c-Professor_Fiendish-2009-09-09T05:36:00.000Z-Tomruen-2009-09-09T03:00:00.000Z","replies":[],"displayName":"Professor"}}-->

The template list so far is incomplete. I'm not convinced it is practical to list them all happily, NOR what the best grouping should be. Prismatic uniform star polyhedra also ought to be included. Star pyramids as well! Tom Ruen (talk) 02:19, 15 September 2009 (UTC)[reply]__DTELLIPSISBUTTON__{"threadItem":{"timestamp":"2009-09-15T02:19:00.000Z","author":"Tomruen","type":"comment","level":1,"id":"c-Tomruen-2009-09-15T02:19:00.000Z","replies":[],"displayName":"Tom Ruen"}}-->

__DTSUBSCRIBEBUTTONDESKTOP__{"headingLevel":2,"name":"h-Tomruen-2009-09-15T02:25:00.000Z","type":"heading","level":0,"id":"h-Classification-2009-09-15T02:25:00.000Z","replies":["c-Tomruen-2009-09-15T02:25:00.000Z-Classification"],"text":"Classification","linkableTitle":"Classification"}-->

Classification

__DTELLIPSISBUTTON__{"threadItem":{"headingLevel":2,"name":"h-Tomruen-2009-09-15T02:25:00.000Z","type":"heading","level":0,"id":"h-Classification-2009-09-15T02:25:00.000Z","replies":["c-Tomruen-2009-09-15T02:25:00.000Z-Classification"]}}-->
__DTSUBSCRIBEBUTTONMOBILE__{"headingLevel":2,"name":"h-Tomruen-2009-09-15T02:25:00.000Z","type":"heading","level":0,"id":"h-Classification-2009-09-15T02:25:00.000Z","replies":["c-Tomruen-2009-09-15T02:25:00.000Z-Classification"],"text":"Classification","linkableTitle":"Classification"}-->

Mathworld lists 10 categories by vertex figures by Norman Johnson (mathematician): [1]. Tom Ruen (talk) 02:25, 15 September 2009 (UTC)[reply]__DTELLIPSISBUTTON__{"threadItem":{"timestamp":"2009-09-15T02:25:00.000Z","author":"Tomruen","type":"comment","level":1,"id":"c-Tomruen-2009-09-15T02:25:00.000Z-Classification","replies":["c-Robert_Stanforth-2009-09-18T21:36:00.000Z-Tomruen-2009-09-15T02:25:00.000Z"],"displayName":"Tom Ruen"}}-->

Johnson's classification looks favourable - and I note that the article List of uniform polyhedra by vertex figure uses this to a certain extent. If that is considered too fine-grained, then something a little coarser like along the following lines may do as well:
  1. Uniform polyhedra with vertex on a rotational axis
  2. Non-snub uniform polyhedra with vertex elsewhere on a reflection plane
  3. Non-snub uniform polyhedra with vertex not on any reflection plane
  4. Snub uniform polyhedra (those containing edges not bisected by a reflection plane)
Also, it would be nice to be able to navigate the non-convex uniform polyhedra within the context of all uniform polyhedra. While the convex ones form a coherent subset, the non-convex ones don't: there is nothing special per se about not being convex.Robert Stanforth (talk) 21:36, 18 September 2009 (UTC)[reply]__DTELLIPSISBUTTON__{"threadItem":{"timestamp":"2009-09-18T21:36:00.000Z","author":"Robert Stanforth","type":"comment","level":2,"id":"c-Robert_Stanforth-2009-09-18T21:36:00.000Z-Tomruen-2009-09-15T02:25:00.000Z","replies":["c-Tomruen-2009-09-18T23:09:00.000Z-Robert_Stanforth-2009-09-18T21:36:00.000Z","c-Tomruen-2009-09-18T23:13:00.000Z-Robert_Stanforth-2009-09-18T21:36:00.000Z"]}}-->
Hi Robert! Thanks for finishing the dual-star templates. Free free to try something here, Johnson's or whatever. I do think nonconvex articles could have both convex and nonconvex templates on the bottom. Anyway I'm promising myself to lay low for a while until I get some things done. Good luck! Tom Ruen (talk) 23:09, 18 September 2009 (UTC)[reply]__DTELLIPSISBUTTON__{"threadItem":{"timestamp":"2009-09-18T23:09:00.000Z","author":"Tomruen","type":"comment","level":3,"id":"c-Tomruen-2009-09-18T23:09:00.000Z-Robert_Stanforth-2009-09-18T21:36:00.000Z","replies":[],"displayName":"Tom Ruen"}}-->
OH, I was inspired to move to { { Star polyhedron navigator } }. Also I should note that {{ Polyhedron navigator } } directs to convex forms. Tom Ruen (talk) 23:13, 18 September 2009 (UTC)[reply]__DTELLIPSISBUTTON__{"threadItem":{"timestamp":"2009-09-18T23:13:00.000Z","author":"Tomruen","type":"comment","level":3,"id":"c-Tomruen-2009-09-18T23:13:00.000Z-Robert_Stanforth-2009-09-18T21:36:00.000Z","replies":[],"displayName":"Tom Ruen"}}-->

Uniform star-polyhedra

__DTELLIPSISBUTTON__{"threadItem":{"headingLevel":2,"name":"h-","type":"heading","level":0,"id":"h-Uniform_star-polyhedra","replies":[]}}-->

Nonconvex uniform polyhedra include (54 with skilling): Cubitruncated cuboctahedron Cubohemioctahedron Ditrigonal dodecadodecahedron Dodecadodecahedron Great cubicuboctahedron Great dirhombicosidodecahedron Great disnub dirhombidodecahedron Great ditrigonal dodecicosidodecahedron Great ditrigonal icosidodecahedron Great dodecahemicosahedron Great dodecahemidodecahedron Great dodecicosahedron Great dodecicosidodecahedron Great icosicosidodecahedron Great icosidodecahedron Great icosihemidodecahedron Great inverted snub icosidodecahedron Great retrosnub icosidodecahedron Great rhombidodecahedron Great rhombihexahedron Great snub dodecicosidodecahedron Great snub icosidodecahedron Great stellated truncated dodecahedron Great truncated cuboctahedron Great truncated icosidodecahedron Icosidodecadodecahedron Icositruncated dodecadodecahedron Inverted snub dodecadodecahedron Nonconvex great rhombicosidodecahedron Nonconvex great rhombicuboctahedron Octahemioctahedron Rhombicosahedron Rhombidodecadodecahedron Small cubicuboctahedron Small ditrigonal dodecicosidodecahedron Small ditrigonal icosidodecahedron Small dodecahemicosahedron Small dodecahemidodecahedron Small dodecicosahedron Small dodecicosidodecahedron Small icosicosidodecahedron Small icosihemidodecahedron Small retrosnub icosicosidodecahedron Small rhombidodecahedron Small rhombihexahedron Small snub icosicosidodecahedron Small stellated truncated dodecahedron Snub dodecadodecahedron Snub icosidodecadodecahedron Stellated truncated hexahedron Tetrahemihexahedron Truncated dodecadodecahedron Truncated great dodecahedron Truncated great icosahedron

Duals of uniform star-polyhedra

__DTELLIPSISBUTTON__{"threadItem":{"headingLevel":2,"name":"h-","type":"heading","level":0,"id":"h-Duals_of_uniform_star-polyhedra","replies":[]}}-->

Duals of nonconvex uniform polyhedra include (54 with skilling's dual): Octahemioctacron Tetrahemihexacron Small hexacronic icositetrahedron Great hexacronic icositetrahedron Hexahemioctacron Tetradyakis hexahedron Great deltoidal icositetrahedron Small rhombihexacron Great triakis octahedron Great disdyakis dodecahedron Great rhombihexacron Small triambic icosahedron Small icosacronic hexecontahedron Small hexagonal hexecontahedron Small dodecacronic hexecontahedron Medial rhombic triacontahedron Small stellapentakis dodecahedron Medial deltoidal hexecontahedron Small rhombidodecacron Medial pentagonal hexecontahedron Medial triambic icosahedron Great ditrigonal dodecacronic hexecontahedron Small ditrigonal dodecacronic hexecontahedron Medial icosacronic hexecontahedron Tridyakis icosahedron Medial hexagonal hexecontahedron Great triambic icosahedron Great icosacronic hexecontahedron Small icosihemidodecacron Small dodecicosacron Small dodecahemidodecacron Great rhombic triacontahedron Great stellapentakis dodecahedron Rhombicosacron Great pentagonal hexecontahedron Great pentakis dodecahedron Medial disdyakis triacontahedron Medial inverted pentagonal hexecontahedron Great dodecacronic hexecontahedron Small dodecahemicosacron Great dodecicosacron Great hexagonal hexecontahedron Great dodecahemicosacron Great triakis icosahedron Great deltoidal hexecontahedron Great disdyakis triacontahedron Great inverted pentagonal hexecontahedron Great dodecahemidodecacron Great icosihemidodecacron Small hexagrammic hexecontahedron Great rhombidodecacron Great pentagrammic hexecontahedron Great dirhombicosidodecacron Great disnub dirhombidodecacron

Read other articles:

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Sistem Jalan Berbayar Elektronik di North Bridge Road Jalan Berbayar Elektronik (Inggris: Electronic Road Pricingcode: en is deprecated , ERP) mer...

 

French footballer Younn Zahary Zahary in 2022Personal informationDate of birth (1998-10-20) 20 October 1998 (age 25)Place of birth Nantes, FranceHeight 1.93 m (6 ft 4 in)Position(s) Centre-back[1]Team informationCurrent team ŽalgirisYouth career2009–2012 La Saint-Pierre2012–2016 Carquefou2016–2017 CaenSenior career*Years Team Apps (Gls)2017–2021 Caen II 22 (1)2018–2021 Caen 15 (0)2020–2021 → Pau FC (loan) 20 (1)2021–2022 Cholet 25 (0)2023–2024 Me...

 

Fungsi hiperbolik Fungsi hiperbolik adalah salah satu hasil kombinasi dari fungsi-fungsi eksponen. Fungsi hiperbolik memiliki rumus. Selain itu memiliki invers serta turunan dan anti turunan fungsi hiperbolik dan inversnya.[1] Definisi sinh, cosh dan tanh csch, sech dan coth Definisi Eksponen sinh x adalah separuh selisih ex dan e−x cosh x adalah rerata ex dan e−x Dalam istilah dari fungsi eksponensial: Hiperbolik sinus: sinh ⁡ x = e x − e − x 2 = e 2 x ȡ...

Coups d'état executed by the military in Pakistan Part of a series on the History of Pakistan Timeline Ancient Palaeolithic Soanian culture, c. 500,000 – 250,000 BCE Neolithic Mehrgarh, c. 7000 – c. 3000 BCE Indus Valley Civilisation, c. 3300 – c. 1700 BCE Vedic Civilization, c. 1500 – c. 500 BCE Achaemenid Empire, c. 550 – c. 330 BCE Gedrosia, c. 542 – c. 330 BCE Gandhara, c. 518 – c. 330 BCE Arachosia, c. 518 – c. 330 BCE Hindush, c. 517 – c. 330 BCE Sattagydia, c. 516 �...

 

Questa voce sull'argomento centri abitati del Sergipe è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Amparo de São FranciscocomuneLocalizzazioneStato Brasile Stato federato Sergipe MesoregioneLeste Sergipano MicroregionePropriá AmministrazioneSindacoAtevaldo Verissimo Cardoso TerritorioCoordinate10°07′51″S 36°55′41″W / 10.130833°S 36.928056°W-10.130833; -36.928056 (Amparo de São Francisco)Coordinate: 10°07�...

 

Courbe de la chaînette pour a = 2, y = 2 cosh ⁡ ( x / 2 ) {\displaystyle y=2\cosh(x/2)} . En mathématiques, la chaînette est une courbe plane transcendante, qui correspond à la forme que prend un câble (ou une chaîne) lorsqu'il est suspendu par ses extrémités et soumis à une force gravitationnelle uniforme (son propre poids). On lui donne parfois le nom de vélaire. Étymologie et histoire Caténaire, formée d'un câble porteur et d'un câble linéaire inférieur, reliés par...

Maximilien de Robespierre Nama dalam bahasa asli(fr) Maximilien de Robespierre (Español) BiografiKelahiran6 Mei 1758 Arras Kematian28 Juli 1794 (36 tahun)Paris Penyebab kematianPemancungan Tempat pemakamanErrancis Cemetery Galat: Kedua parameter tahun harus terisi! Katakomba Paris Galat: Kedua parameter tahun harus terisi! 45 President of the National Convention 4 Juni 1794 – 19 Juni 1794 ← Claude Antoine, comte Prieur-Duvernois – Élie Lacoste → 26 President o...

 

Marleen GorrisMarleen Gorris (1982)Lahir09 Desember 1948 (umur 75)Roermond, BelandaKebangsaanBelandaPekerjaanSutradara, penulis latarDikenal atasAntonia's Line (1995) Marleen Gorris (kelahiran 9 Desember 1948) adalah seorang penulis-sutradara dari Belanda. Gorris dikenal sebagai seorang feminis terbuka dan pendukung masalah-masalah gay dan lesbian dengan merefleksikannya dalam karya-karyanya. Pada 1995, ia memenangkan sebuah Oscar untuk Film Berbahasa Asing Terbaik untuk Antonia's Line,...

 

Football match2008 J.League Cup Final Oita Trinita Shimizu S-Pulse 2 0 DateNovember 1, 2008VenueNational Stadium, Tokyo← 2007 2009 → 2008 J.League Cup Final was the 16th final of the J.League Cup competition. The final was played at National Stadium in Tokyo on November 1, 2008. Oita Trinita won the championship.[1] Match details November 1, 2008 Oita Trinita2–0Shimizu S-Pulse Daiki Takamatsu 68'Ueslei 89' Report National Stadium Oita Trinita GK 16 Seig...

Questa voce sull'argomento calciatori papuani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. David Aua Nazionalità  Papua Nuova Guinea Altezza 185 cm Calcio Ruolo Portiere Squadra Gigira Laitepo CarrieraSquadre di club1 2002-2004 PS United? (-?)2005-2007 Sobou Lahi? (-?)2007-2010 Gelle Hills United? (-?)2010-2011 Hekari United? (-?)2011- Gigira Laitepo? (-?)Nazionale 2002-2011 Papua Nuova G...

 

Paralympic track and field event 2017 World Para Athletics ChampionshipsHost cityLondon, England United KingdomNations92Athletes1074Events213Dates14–23 July 2017Main venueLondon Stadium← 2015 Doha2019 Dubai → The 2017 World Para Athletics Championships were a Paralympic track and field meet organized by World Para Athletics, a subcommittee of the International Paralympic Committee. It was held at London Stadium in London from 14 to 23 July 2017. It was the 8th edition ...

 

Container for liquids or compressed gas This article is about fluid containment vessels. For other uses, see Tank (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Storage tank – news · newspapers · books · scholar · JSTOR (February 2018) (Learn how and when to remove this message) Cylindrica...

c’t – Magazin für Computertechnik Beschreibung Computerzeitschrift Verlag Heise Medien GmbH Erstausgabe 19. Oktober 1983 Erscheinungsweise 14-täglich am Samstag Verkaufte Auflage 264.384 Exemplare (IVW 1/2024) Verbreitete Auflage 269.278 Exemplare (IVW 1/2024) Reichweite 0,963 Mio. Leser (AWA 2019[1]) Chefredakteur Torsten Beeck[2] Herausgeber Christian Heise, Ansgar Heise, Christian Persson Weblink ct.de ISSN (Print) 0724-8679 Der 5,71 Meter hohe Turm aus den...

 

English actress (1887–1983) Lynn FontannePhotograph by Carl Van Vechten, 1932BornLillie Louise Fontanne(1887-12-06)6 December 1887[n 1]Woodford, EssexDied30 July 1983(1983-07-30) (aged 95)Genesee Depot, Wisconsin, U.S.Resting placeForest Home CemeteryOccupationActressYears active1905–1967Spouse Alfred Lunt ​ ​(m. 1922; died 1977)​ Lynn Fontanne (/fɒnˈtæn/;[1] 6 December 1887 – 30 July 1983)[n 1] was an ...

 

Charles Wilkes Charles WilkesInformación personalNacimiento 1798Nueva YorkFallecimiento 1877, 78 añosWashington D. C.Sepultura Cementerio Nacional de Arlington Nacionalidad EstadounidenseFamiliaPadres John de Ponthieu Wilkes Mary Magdalene Wilkes EducaciónEducado en Universidad de Columbia Información profesionalÁrea oficial de la Marina, explorador, botánico, pteridólogoAños activo desde 1818Cargos ocupados Comandante de Expedición Wilkes (1838-1842) Abreviatura en botánica Wi...

此條目需要补充更多来源。 (2014年8月13日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:不丹 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 27°30′51″N 90°26′01″E / 27.514162°N 90.433601°E / 27.514162; 90.433601 不�...

 

Princess of Carignano Marie de BourbonPrincess of CarignanoBorn(1606-05-03)3 May 1606Hôtel de Soissons, Paris, FranceDied3 June 1692(1692-06-03) (aged 86)Hôtel de Soissons, Paris, FranceSpouseThomas Francis, Prince of CarignanoIssueDetailLouise, Hereditary Princess of Baden-BadenEmmanuel Philibert, Prince of CarignanoJoseph Emmanuel, Count of SoissonsEugene Maurice, Count of SoissonsHouseBourbon-CondéFatherCharles, Count of SoissonsMotherAnne, Countess of ClermontSignature Marie de B...

 

1856–1943 German-language newspaper Frankfurter Zeitung, 1906 The Frankfurter Zeitung (lit. 'Frankfurter Newspaper', German: [ˈfʁaŋkfʊʁtɐ ˈtsaɪtʊŋ]) was a German-language newspaper that appeared from 1856 to 1943. It emerged from a market letter that was published in Frankfurt. In Nazi Germany, it was considered the only mass publication not completely controlled by the Propagandaministerium under Joseph Goebbels. History In 1856,[1] German writer and politic...

1799 coup in Revolutionary France that brought Napoleon to power Eighteenth Brumaire redirects here. For Karl Marx's essay about the French coup of 1851, see The Eighteenth Brumaire of Louis Bonaparte. Coup d'état of 18th BrumaireCoup d'État du 18e BrumaireGeneral Bonaparte during the coup d'état of 18 Brumaire in Saint-Cloud, painting by François Bouchot, 1840Date9 November 1799LocationChâteau de Saint-CloudParticipants Napoleon Bonaparte Emmanuel Joseph Sieyès Charles-Maurice Talleyra...

 

Latin essay by Dante Alighieri De vulgari eloquentia, 1577 De vulgari eloquentia (Ecclesiastical Latin: [de vulˈgaːri eloˈkwɛntsja]; On eloquence in the vernacular) is the title of a Latin essay by Dante Alighieri. Although meant to consist of four books, it abruptly terminates in the middle of the second book. It was probably composed shortly after Dante went into exile, circa 1302–1305. In the first book, Dante discusses the relationship between Latin and the vernacular langua...