Polyhedron with 120 faces
3D model of a medial disdyakis triacontahedron
In geometry , the medial disdyakis triacontahedron is a nonconvex isohedral polyhedron . It is the dual of the uniform truncated dodecadodecahedron . It has 120 triangular faces.
Proportions
The triangles have one angle of
arccos
-->
(
− − -->
1
10
)
≈ ≈ -->
95.739
170
477
27
∘ ∘ -->
{\displaystyle \arccos(-{\frac {1}{10}})\approx 95.739\,170\,477\,27^{\circ }}
, one of
arccos
-->
(
3
8
+
11
40
5
)
≈ ≈ -->
8.142
571
179
89
∘ ∘ -->
{\displaystyle \arccos({\frac {3}{8}}+{\frac {11}{40}}{\sqrt {5}})\approx 8.142\,571\,179\,89^{\circ }}
and one of
arccos
-->
(
− − -->
3
8
+
11
40
5
)
≈ ≈ -->
76.118
258
342
85
∘ ∘ -->
{\displaystyle \arccos(-{\frac {3}{8}}+{\frac {11}{40}}{\sqrt {5}})\approx 76.118\,258\,342\,85^{\circ }}
. The dihedral angle equals
arccos
-->
(
− − -->
9
11
)
≈ ≈ -->
144.903
198
772
42
∘ ∘ -->
{\displaystyle \arccos(-{\frac {9}{11}})\approx 144.903\,198\,772\,42^{\circ }}
. Part of each triangle lies within the solid, hence is invisible in solid models.
References
External links
Kepler-Poinsot polyhedra (nonconvex regular polyhedra)Uniform truncations of Kepler-Poinsot polyhedra Nonconvex uniform hemipolyhedra Duals of nonconvex uniform polyhedra Duals of nonconvex uniform polyhedra with infinite stellations