Symmetrizable compact operator

In mathematics, a symmetrizable compact operator is a compact operator on a Hilbert space that can be composed with a positive operator with trivial kernel to produce a self-adjoint operator. Such operators arose naturally in the work on integral operators of Hilbert, Korn, Lichtenstein and Marty required to solve elliptic boundary value problems on bounded domains in Euclidean space. Between the late 1940s and early 1960s the techniques, previously developed as part of classical potential theory, were abstracted within operator theory by various mathematicians, including M. G. Krein, William T. Reid, Peter Lax and Jean Dieudonné. Fredholm theory already implies that any element of the spectrum is an eigenvalue. The main results assert that the spectral theory of these operators is similar to that of compact self-adjoint operators: any spectral value is real; they form a sequence tending to zero; any generalized eigenvector is an eigenvector; and the eigenvectors span a dense subspace of the Hilbert space.

Discussion

Let H be a Hilbert space. A compact operator K on H is symmetrizable if there is a bounded self-adjoint operator S on H such that S is positive with trivial kernel, i.e. (Sx,x) > 0 for all non-zero x, and SK is self-adjoint:

In many applications S is also compact. The operator S defines a new inner product on H

Let HS be the Hilbert space completion of H with respect to this inner product.

The operator K defines a formally self-adjoint operator on the dense subspace H of HS. As Krein (1947) and Reid (1951) noted, the operator has the same operator norm as K. In fact[1] the self-adjointness condition implies

It follows by induction that, if (x,x)S = 1, then

Hence

If K is only compact, Krein gave an argument, invoking Fredholm theory, to show that K defines a compact operator on HS. A shorter argument is available if K belongs to a Schatten class.

When K is a Hilbert–Schmidt operator, the argument proceeds as follows. Let R be the unique positive square root of S and for ε > 0 define[2]

These are self-adjoint Hilbert–Schmidt operator on H which are uniformly bounded in the Hilbert–Schmidt norm:

Since the Hilbert–Schmidt operators form a Hilbert space, there is a subsequence converging weakly to s self-adjoint Hilbert–Schmidt operator A. Since Aε R tends to RK in Hilbert–Schmidt norm, it follows that

Thus if U is the unitary induced by R between HS and H, then the operator KS induced by the restriction of K corresponds to A on H:

The operators K − λI and K* − λI are Fredholm operators of index 0 for λ ≠ 0, so any spectral value of K or K* is an eigenvalue and the corresponding eigenspaces are finite-dimensional. On the other hand, by the special theorem for compact operators, H is the orthogonal direct sum of the eigenspaces of A, all finite-dimensional except possibly for the 0 eigenspace. Since RA = K* R, the image under R of the λ eigenspace of A lies in the λ eigenspace of K*. Similarly R carries the λ eigenspace of K into the λ eigenspace of A. It follows that the eigenvalues of K and K* are all real. Since R is injective and has dense range it induces isomorphisms between the λ eigenspaces of A, K and K*. The same is true for generalized eigenvalues since powers of K − λI and K* − λI are also Fredholm of index 0. Since any generalized λ eigenvector of A is already an eigenvector, the same is true for K and K*. For λ = 0, this argument shows that Kmx = 0 implies Kx = 0.

Finally the eigenspaces of K* span a dense subspace of H, since it contains the image under R of the corresponding space for A. The above arguments also imply that the eigenvectors for non-zero eigenvalues of KS in HS all lie in the subspace H.

Hilbert–Schmidt operators K with non-zero real eigenvalues λn satisfy the following identities proved by Carleman (1921):

Here tr is the trace on trace-class operators and det is the Fredholm determinant. For symmetrizable Hilbert–Schmidt operators the result states that the trace or determinant for K or K* is equal to the trace or determinant for A. For symmetrizable operators, the identities for K* can be proved by taking H0 to be the kernel of K* and Hm the finite dimensional eigenspaces for the non-zero eigenvalues λm. Let PN be the orthogonal projection onto the direct sum of Hm with 0 ≤ mN. This subspace is left invariant by K*. Although the sum is not orthogonal the restriction PNK*PN of K* is similar by a bounded operator with bounded inverse to the diagonal operator on the orthogonal direct sum with the same eigenvalues. Thus

Since PNK*PN tends to K* in Hilbert–Schmidt norm, the identities for K* follow by passing to the limit as N tends to infinity.

Notes

References

  • Carleman, T. (1921), "Zur Theorie der linearen Integralgleichungen", Math. Z., 9 (3–4): 196–217, doi:10.1007/bf01279029, S2CID 122412155
  • Dieudonné, J. (1969), Foundations of modern analysis, Pure and Applied Mathematics, Academic Press
  • Halmos, P.R. (1974), A Hilbert space problem book, Graduate Texts in Mathematics, vol. 19, Springer-Verlag, ISBN 978-0-387-90090-2, Problem 82
  • Kellogg, Oliver Dimon (1929), Foundations of potential theory, Die Grundlehren der Mathematischen Wissenschaften, vol. 31, Springer-Verlag
  • Khavinson, D.; Putinar, M.; Shapiro, H. S. (2007), "Poincaré's variational problem in potential theory", Arch. Ration. Mech. Anal., 185 (1): 143–184, Bibcode:2007ArRMA.185..143K, CiteSeerX 10.1.1.569.7145, doi:10.1007/s00205-006-0045-1, S2CID 855706
  • Krein, M. G. (1998), "Compact linear operators on functional spaces with two norms (translated from 1947 Ukrainian article)", Integral Equations Operator Theory, 30 (2): 140–162, doi:10.1007/bf01238216, S2CID 120822340
  • Landkof, N. S. (1972), Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, vol. 180, Springer-Verlag
  • Lax, Peter D. (1954), "Symmetrizable linear transformations", Comm. Pure Appl. Math., 7 (4): 633–647, doi:10.1002/cpa.3160070403
  • Reid, William T. (1951), "Symmetrizable completely continuous linear transformations in Hilbert space", Duke Math. J., 18: 41–56, doi:10.1215/s0012-7094-51-01805-4
  • Zaanen, Adriaan Cornelis (1953), Linear analysis; Measure and integral, Banach and Hilbert space, linear integral equations, Interscience

Read other articles:

This article is about the soundtrack album. For the soundtrack companion album, see E.T. the Extra-Terrestrial (album). 1982 soundtrack album by John WilliamsE.T. the Extra-Terrestrial: Music from the Original SoundtrackSoundtrack album by John WilliamsReleasedJune 11, 1982RecordedMarch–April 1982StudioMGM Scoring StageGenreClassicalLabelMCAProducer John Williams Bruce Botnick John Williams chronology Raiders of the Lost Ark(1981) E.T. the Extra-Terrestrial: Music from the Original ...

 

Dr. KH. [1]Ahmad Heryawan ᮃᮂᮙᮓ᮪ ᮠᮦᮛᮡᮝᮔ᮪Lc., M.Si.Potret resmi sebagai Gubernur Jawa Barat (2013) Gubernur Jawa Barat ke-13Masa jabatan13 Juni 2008 – 13 Juni 2018WakilDede Yusuf (2008–2013)Deddy Mizwar (2013–2018) PendahuluDanny SetiawanPenggantiIwa Karniwa (Plh.)Mochamad Iriawan (Pj.)Ridwan KamilWakil Ketua Dewan Perwakilan Rakyat Daerah Provinsi DKI JakartaMasa jabatan4 Oktober 2004 – 13 Juni 2008Menjabat bersama Ilal Ferh...

 

Turkish AirlinesTürk Hava Yolları IATA ICAO Kode panggil TK THY TURKISH Didirikan20 Mei 1933; 90 tahun lalu (1933-05-20)AOC #TQKF144FPenghubungIstanbul Havalimanı[1]Program penumpang setiaMiles&SmilesAliansiStar AllianceAnak perusahaan Air Albania (49%) AnadoluJet (100%)[2] SunExpress (50%)[2] Turkish Cargo (100%)[2] Turkish Technic (100%)[2] Turkish DO & CO (50%)[2] Turkish Ground Services (50%)[2] Turkish OPET Aviation ...

American LGBT artistic awards (founded 1999) Gaylactic Spectrum AwardsLogo of the Gaylactic Spectrum Award FoundationAwarded forExcellence in LGBT speculative fictionCountryUnited StatesPresented by Gaylactic Network (1999–2001) Gaylactic Spectrum Awards Foundation (2002–present) First awarded1999WebsiteSpectrumawards.org/ Part of a series onSex and sexuality inspeculative fiction Main topics Sex and sexuality Gender Women Reproduction Genres Women in comics Feminist science fiction Slash...

 

Type of gas-phase ion detector This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Daly detector – news · newspapers · books · scholar · JSTOR (December 2021) Daly detectorSchematic of a Daly detectorInventorNorman Richard DalyRelated itemsMicrochannel plate detectorElectron multiplier A Daly detector ...

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

French football tournament Football match2020 Trophée des ChampionsThe Stade Bollaert-Delelis, in Lens, hosted the match.EventTrophée des Champions Paris Saint-Germain Marseille 2 1 Date13 January 2021VenueStade Bollaert-Delelis, Lens, FranceMan of the MatchMauro Icardi (Paris Saint-Germain)[1]RefereeRuddy Buquet[2]Attendance0[note 1]← 2019 2021 → The 2020 Trophée des Champions (transl. 2020 Champions Trophy) was the 25th edition of the French supe...

 

Family of marine fishes For other uses, see Wrasse (disambiguation). Wrasses Moon wrasse, Thalassoma lunare, a typical wrasse Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Labriformes Family: LabridaeG. Cuvier, 1816 Genera See text. The wrasses are a family, Labridae, of marine fish, many of which are brightly colored. The family is large and diverse, with over 600 species in 81 genera, which are divided into 9 subgroups or tribes....

 

قائمة رؤساء شمال قبرص التركية قائمة رؤساء شمال قبرص التركية إرسين تاتار  منذ 23 أكتوبر 2020  البلد قبرص الشمالية  عن المنصب مدة الولاية 5 سنة  تأسيس المنصب 15 نوفمبر 1983  الموقع الرسمي الموقع الرسمي  تعديل مصدري - تعديل   فيما يلي أسماء رؤساء جمهورية قبرص الشمال�...

Government of Malaysia since 2022 Anwar Ibrahim cabinet23rd Cabinet of Malaysia2022–Date formed3 December 2022People and organisationsHead of stateAl-Sultan Abdullah (2022–2024)Sultan Ibrahim Iskandar (since 2024)Head of governmentAnwar IbrahimDeputy head of governmentAhmad Zahid HamidiFadillah YusofNo. of ministers31 ministers 29 deputy ministersTotal no. of members60 membersMember parties Pakatan Harapan (PH) People's Justice Party (PKR) Democratic Action Party (DAP) National Trust Part...

 

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

Election in New Jersey Main article: 1912 United States presidential election 1912 United States presidential election in New Jersey ← 1908 November 5, 1912 1916 →   Nominee Woodrow Wilson Theodore Roosevelt William Howard Taft Party Democratic Progressive Republican Home state New Jersey New York Ohio Running mate Thomas R. Marshall Hiram Johnson Nicholas M. Butler Electoral vote 14 0 0 Popular vote 178,289 145,410 88,835 Percentage 41.20% 33.60...

Capital of West Bengal, India For other uses, see Kolkata (disambiguation). Calcutta redirects here. For other uses, see Calcutta (disambiguation). Megacity in West Bengal, IndiaKolkata CalcuttaMegacityKolkata skyline containing Vidyasagar Setu and Victoria MemorialDurga Puja in KolkataCentral Business District of KolkataVintage tramsScience City KolkataJorasanko Thakur BariBirla Planetarium and The 42Eden Gardens during a matchHowrah BridgeNickname(s): City of Joy, City of Castles, Gate...

 

Halaman ini berisi artikel tentang film Swedia. Untuk album Owen Pallett, lihat A Swedish Love Story EP. A Swedish Love StoryNama lainEn kärlekshistoriaSutradaraRoy AnderssonProduserEjnar GunnerholmDitulis olehRoy AnderssonPemeranAnn-Sofie KylinRolf SohlmanPenata musikBjörn IsfältJan BandelSinematograferJörgen PerssonPenyuntingKalle BomanTanggal rilis 24 April 1970 (1970-04-24) Durasi115 menitNegaraSwediaBahasaSwedia A Swedish Love Story (bahasa Swedia: En kärlekshis...

 

University in Australia USQ redirects here. For other uses, see USQ (disambiguation).University of Southern QueenslandCoat of armsFormer names List Queensland Institute of Technology (Darling Downs)(1967–1971)Darling Downs Institute of Advanced Education(1971–1989)University College of Southern Queensland(1990–1991) MottoPer Studia Mens Nova[1] (Latin)Motto in EnglishThrough study the mind is renewed[2]TypePublic research universityEstablished1967 (technical institu...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) يورغن روزنتال معلومات شخصية الميلاد 28 يوليو 1949 (75 سنة)  مواطنة ألمانيا  الحياة العملية المهنة طبال  اللغات الألمانية  تعديل مصدري - تعديل   يورغن �...

 

Paul Ince Informasi pribadiNama lengkap Paul Emerson Carlyle InceTanggal lahir 21 Oktober 1967 (umur 56)Tempat lahir Ilford, InggrisTinggi 5 ft 10 in (1,78 m)Posisi bermain Gelandang (pensiun)Informasi klubKlub saat ini Reading (manager)Karier junior1982–1984 West Ham UnitedKarier senior*Tahun Tim Tampil (Gol) 1984–19891989–19951995–19971997–19991999–20022002–200620062007 West Ham UnitedManchester UnitedInter MilanLiverpoolMiddlesbroughWolverhampton Wanderer...

 

2020 Canadian filmPoint and Line to PlaneDirected bySofia BohdanowiczWritten bySofia BohdanowiczProduced bySofia BohdanowiczCalvin ThomasStarringDeragh CampbellCinematographySofia BohdanowiczEdited bySofia BohdanowiczMusic byStefana FratilaRelease date July 2020 (2020-07) (Marseille) Running time17 minutesCountryCanadaLanguageEnglish Point and Line to Plane is a 2020 Canadian dramatic short film directed by Sofia Bohdanowicz and starring Deragh Campbell. The film continues to fo...

Mala Powers nella serie antologica Appointment with Adventure (1955) Mala Powers, nata Mary Ellen Powers (San Francisco, 20 dicembre 1931 – Burbank, 11 giugno 2007), è stata un'attrice statunitense. Indice 1 Biografia 2 Vita privata 3 Filmografia 3.1 Cinema 3.2 Televisione 4 Doppiatrici italiane 5 Altri progetti 6 Collegamenti esterni Biografia Nativa di San Francisco, figlia di un executive dell'agenzia di informazione United Press International, Mala Powers si trasferì con la famiglia a...

 

В статье не хватает ссылок на источники (см. рекомендации по поиску). Информация должна быть проверяема, иначе она может быть удалена. Вы можете отредактировать статью, добавив ссылки на авторитетные источники в виде сносок. (10 октября 2019) В этой статье перечислены политич...