Subsumption lattice

Pic. 1: Non-modular sublattice N5 in subsumption lattice

A subsumption lattice is a mathematical structure used in the theoretical background of automated theorem proving and other symbolic computation applications.

Definition

A term t1 is said to subsume a term t2 if a substitution σ exists such that σ applied to t1 yields t2. In this case, t1 is also called more general than t2, and t2 is called more specific than t1, or an instance of t1.

The set of all (first-order) terms over a given signature can be made a lattice over the partial ordering relation "... is more specific than ..." as follows:

  • consider two terms equal if they differ only in their variable naming,[1]
  • add an artificial minimal element Ω (the overspecified term), which is considered to be more specific than any other term.

This lattice is called the subsumption lattice. Two terms are said to be unifiable if their meet differs from Ω.

Properties

Pic. 2: Part of the subsumption lattice showing that the terms f(a,x), f(x,x), and f(x,c) are pairwise unifiable, but not simultaneously. (f omitted for brevity.)

The join and the meet operation in this lattice are called anti-unification and unification, respectively. A variable x and the artificial element Ω are the top and the bottom element of the lattice, respectively. Each ground term, i.e. each term without variables, is an atom of the lattice. The lattice has infinite descending chains, e.g. x, g(x), g(g(x)), g(g(g(x))), ..., but no infinite ascending ones.

If f is a binary function symbol, g is a unary function symbol, and x and y denote variables, then the terms f(x,y), f(g(x),y), f(g(x),g(y)), f(x,x), and f(g(x),g(x)) form the minimal non-modular lattice N5 (see Pic. 1); its appearance prevents the subsumption lattice from being modular and hence also from being distributive.

The set of terms unifiable with a given term need not be closed with respect to meet; Pic. 2 shows a counter-example.

Denoting by Gnd(t) the set of all ground instances of a term t, the following properties hold:[2]

  • t equals the join of all members of Gnd(t), modulo renaming,
  • t1 is an instance of t2 if and only if Gnd(t1) ⊆ Gnd(t2),
  • terms with the same set of ground instances are equal modulo renaming,
  • if t is the meet of t1 and t2, then Gnd(t) = Gnd(t1) ∩ Gnd(t2),
  • if t is the join of t1 and t2, then Gnd(t) ⊇ Gnd(t1) ∪ Gnd(t2).

'Sublattice' of linear terms

Pic. 5: Distributive sublattice of linear terms
Pic. 4: M3 built from linear terms
Pic. 3: N5 built from linear terms

The set of linear terms, that is of terms without multiple occurrences of a variable, is a sub-poset of the subsumption lattice, and is itself a lattice. This lattice, too, includes N5 and the minimal non-distributive lattice M3 as sublattices (see Pic. 3 and Pic. 4) and is hence not modular, let alone distributive.

The meet operation yields always the same result in the lattice of all terms as in the lattice of linear terms. The join operation in the all terms lattice yields always an instance of the join in the linear terms lattice; for example, the (ground) terms f(a,a) and f(b,b) have the join f(x,x) and f(x,y) in the all terms lattice and in the linear terms lattice, respectively. As the join operations do not in general agree, the linear terms lattice is not properly speaking a sublattice of the all terms lattice.

Join and meet of two proper[3] linear terms, i.e. their anti-unification and unification, corresponds to intersection and union of their path sets, respectively. Therefore, every sublattice of the lattice of linear terms that does not contain Ω is isomorphic to a set lattice, and hence distributive (see Pic. 5).

Origin

Apparently, the subsumption lattice was first investigated by Gordon D. Plotkin, in 1970.[4]

References

  1. ^ formally: factorize the set of all terms by the equivalence relation "... is a renaming of ..."; for example, the term f(x,y) is a renaming of f(y,x), but not of f(x,x)
  2. ^ Reynolds, John C. (1970). Meltzer, B.; Michie, D. (eds.). "Transformational Systems and the Algebraic Structure of Atomic Formulas" (PDF). Machine Intelligence. 5. Edinburgh University Press: 135–151.
  3. ^ i.e. different from Ω
  4. ^ Plotkin, Gordon D. (Jun 1970). Lattice Theoretic Properties of Subsumption. Edinburgh: Univ., Dept. of Machine Intell. and Perception.

Read other articles:

John Lubbock, 1st Baron AveburyNama dalam bahasa asli(en) John BiografiKelahiran30 April 1834 London Kematian28 Mei 1913 (79 tahun)Broadstairs (en)   Member of the House of Lords (en) 22 Januari 1900 – 28 Mei 1913  37è President of the Royal Statistical Society (en) 1900 – 1902 ← Henry Fowler, Viscount Wolverhampton I – Patrick Craigie (en) →   Member of the 26th Parliament of the United Kingdom (en) 13 Juli 1...

 

 

Bontang City FCNama lengkapBontang City Football ClubJulukanPasukan Kota TamanBerdiri2018; 6 tahun lalu (2018)StadionStadion Taman Prestasi(Kapasitas: 25,000)PemilikAskot PSSI BontangManajerNurkhalid[1]LigaLiga 3 Kostum kandang Kostum tandang Bontang City FC adalah sebuah klub sepak bola Indonesia yang berbasis di Kota Bontang, Provinsi Kalimantan Timur. Tim ini saat ini berlaga di Liga 3.[2] Referensi ^ https://bontangpost.id/66797-semifinal-liga-3-bontang-city-fc-ajukan...

 

 

DragonflyIlustrasi konsep misiJenis misiPengintaian astrobiologiOperatorNASASitus webdragonfly.jhuapl.eduDurasi misiFase sains: ≥ 2 tahun [1] Properti wahanaWahana antariksaDragonflyJenis wahana antariksaPesawat rotor-landerProdusenJohns Hopkins Applied Physics LaboratoryMassa mendarat≈450 kg (990 pon) [1]Daya70 W (diinginkan)[1] from an RTG Awal misiTanggal luncur2026[2] Pendarat TitanTanggal pendaratan2034Lokasi pendaratanShangri-La dune fields&...

Santo Andreas dari KretaIkon Rusia yang menggambarkan Santo Andreas dari Kreta (kiri) dan Santa Maria dari MesirBapa Yang dimuliakanLahirskt. 650DamaskusMeninggal4 Juli 712 atau 726 atau 740MetileneDihormati diGereja OrtodoksGereja Katolik RomaPesta4 JuliAtributVestimentum sebagai Uskup, memegang Kitab Injil atau Gulungan, dengan tangan kanannya yang diangkat untuk memberkati. Secara ikonografi, Santo Andreas digambarkan berambut lebat panjang berwarna abu-abu dan berjenggot. Santo Andreas da...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Artikel ini tidak memiliki bagian pembuka yang sesuai dengan standar Wikipedia. Mohon tulis paragraf pembuka yang informatif sehingga pembaca dapat memahami maksud dari Liga Provinsi Teheran. Contoh paragraf pembuka Liga Provinsi Teheran adalah .... (P...

 

 

1986 murder in Portsmouth, England Linda CookLinda CookBorn6 December 1962[citation needed]Died9 December 1986 (aged 24)Cause of deathAsphyxiationBody discoveredMerry Row, Portsmouth, Hampshire, EnglandNationalityBritishHeight1.499 m (4 ft 11.0 in)ParentJames Cook The murder of Linda Cook was committed in Portsmouth on 9 December 1986. The subsequent trial led to a miscarriage of justice when Michael Shirley, an 18-year-old Royal Navy sailor, was wrongly convicted ...

Public art university in Toronto, Canada OCAD redirects here. For other uses, see OCAD (disambiguation). Ontario College of Art & Design UniversityLogo of OCAD UniversityOther nameOCAD UniversityFormer namesOntario School of Art (1876–86)Toronto Art School (1886–90)Central Ontario School of Art and Industrial Design (1890–1912)Ontario College of Art (1912–96)Ontario College of Art & Design (1996–2010)TypePublic universityEstablished4 April 1876; 148 years ago...

 

 

Perdana Menteri BarbadosLambang kebesaran BarbadosPetahanaMia Mottleysejak 25 Mei 2018GelarThe HonourableJenisKepala pemerintahanAnggotaMajelis BarbadosKediamanIstana IlaroKantorTimur Laut St. MichaelDitunjuk olehgubernur jenderalMasa jabatanLima tahunDibentuk30 November 1966Pejabat pertamaErrol BarrowGaji101,588 USD setiap tahun[1] Perdana Menteri Barbados adalah kepala pemerintahan Barbados. Perdana menteri diangkat oleh Elizabeth II Ratu Barbados (diwakili oleh gubernur jender...

 

 

Запрос «Пугачёва» перенаправляется сюда; см. также другие значения. Алла Пугачёва На фестивале «Славянский базар в Витебске», 2016 год Основная информация Полное имя Алла Борисовна Пугачёва Дата рождения 15 апреля 1949(1949-04-15) (75 лет) Место рождения Москва, СССР[1]...

Football league seasonPrimera División de MéxicoSeason2001−02ChampionsAmérica (9th title)RelegatedLeónChampions' CupAméricaNecaxaTop goalscorerSebastián Abreu(19 goals)← Invierno 2001 Apertura 2002 → Primera División de México (Mexican First Division) Verano 2002 was the 2002 edition of the Primera División de México, crowning Mexico's spring champion in football. América won the championship for the ninth time in its history and thus qualified for the CONCACAF Champions' Cup...

 

 

Aubrey de Vere Aubrey de Vere, Earl ke-20 Oxford KG PC (28 Februari 1627 – 12 Maret 1703) merupakan seorang Royalis selama Perang Saudara Inggris. Ia adalah putra Robert de Vere dan istrinya Beatrix van Hemmend.[1] Ia belajar di Friesland, Belanda setelah ayahandanya terluka parah dalam Pengepungan Maastricht pada 1632, ketika de Vere hanya berusia enam tahun; tahun-tahun kemudian ia bergabung dengan Resimen Inggris bersama Belanda. Catatan ^ White-Spunner, p. 44. In Horse Guar...

 

 

  「俄亥俄」重定向至此。关于其他用法,请见「俄亥俄 (消歧义)」。 俄亥俄州 美國联邦州State of Ohio 州旗州徽綽號:七葉果之州地图中高亮部分为俄亥俄州坐标:38°27'N-41°58'N, 80°32'W-84°49'W国家 美國加入聯邦1803年3月1日,在1953年8月7日追溯頒定(第17个加入联邦)首府哥倫布(及最大城市)政府 • 州长(英语:List of Governors of {{{Name}}}]]) •&...

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

 

American football player (born 1984) This article is about the football player. For the blues musician, see Prater & Hayes. American football player Matt PraterPrater with the Broncos in 2012No. 5 – Arizona CardinalsPosition:PlacekickerPersonal informationBorn: (1984-08-10) August 10, 1984 (age 39)Mayfield Heights, Ohio, U.S.[1]Height:5 ft 10 in (1.78 m)Weight:201 lb (91 kg)Career informationHigh school:Estero (FL)College:UCF (2002–2005)Undrafted:...

 

 

American college basketball season This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 2014–15 Vermont Catamounts men's basketball team – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this message) 2014–15 Vermont Catamounts men's basketballCBI, SemifinalsConferenc...

Creuza de mäalbum in studioArtistaFabrizio De André Pubblicazionemarzo 1984 Durata33:29 Dischi1 Tracce7 GenereMusica d'autoreFolk rockMusica etnicaWorld music EtichettaDischi Ricordi ProduttoreMauro Pagani, Fabrizio De André ArrangiamentiMauro Pagani RegistrazioneFelipe Studio, MilanoStone Castle Studios, Carimate Velocità di rotazione33 giri FormatiLP[1] Altri formatiAudiocassetta, CD NoteL'album e la canzone Creuza de mä si aggiudicano la Targa Tenco. Certificazioni originaliDi...

 

 

International sporting eventMen's discus throw at the Pan American Games International sporting eventAthletics at the2007 Pan American GamesTrack events100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen5000 mmenwomen10,000 mmenwomen100 m hurdleswomen110 m hurdlesmen400 m hurdlesmenwomen3000 msteeplechasemenwomen4×100 m relaymenwomen4×400 m relaymenwomenRoad eventsMarathonmenwomen20 km walkmenwomen50 km walkmenField eventsHigh jumpmenwomenPole vaultmenwomenLong jumpmenwomenTr...

 

 

Typlokalität der Anisium-Ladinium-Grenze, ein Kalkstein-Aufschluss bei Bagolino in den italienischen Alpen, rechts unten eine Nahaufnahme des „Golden Spike“. Die Basis des Ediacariums mit dem „Golden Spike“ (unten) in ihrer Typlokalität, ein Dolomit-Aufschluss am Enorama Creek, Flinderskette, Südaustralien Global Stratotype Section and Point (auch Global Boundary Stratotype Section and Point, wörtlich „Profil und Punkt des weltweiten Grenz-Stratotypus“, kurz GSSP) ist die Beze...

Platalea leucorodia Cet article est une ébauche concernant les oiseaux. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations du projet ornithologie. Consultez la liste des tâches à accomplir en page de discussion. Platalea leucorodia Spatule blanche (Ariège, France)Classification COI Règne Animalia Embranchement Chordata Classe Aves Ordre Pelecaniformes Famille Threskiornithidae Genre Platalea EspècePlatalea leucorodiaLinnaeus, 1758 Statut...

 

 

Town and Municipality in Baalbek-Hermel, LebanonArsal Aarsal, Ersal 'IrsalTown and MunicipalityArsalLocation in LebanonCoordinates: 34°10′46″N 36°25′15″E / 34.17944°N 36.42083°E / 34.17944; 36.42083Country LebanonGovernorateBaalbek-HermelDistrictBaalbekArea • Total122.37 sq mi (316.94 km2)Elevation5,090 ft (1,550 m)PopulationEstimate • Total50,000[1]Time zoneEST+7 Ain ChoaabAlternative nameA...