Stochastic ordering

In probability theory and statistics, a stochastic order quantifies the concept of one random variable being "bigger" than another. These are usually partial orders, so that one random variable may be neither stochastically greater than, less than, nor equal to another random variable . Many different orders exist, which have different applications.

Usual stochastic order

A real random variable is less than a random variable in the "usual stochastic order" if

where denotes the probability of an event. This is sometimes denoted or .

If additionally for some , then is stochastically strictly less than , sometimes denoted . In decision theory, under this circumstance, B is said to be first-order stochastically dominant over A.

Characterizations

The following rules describe situations when one random variable is stochastically less than or equal to another. Strict version of some of these rules also exist.

  1. if and only if for all non-decreasing functions , .
  2. If is non-decreasing and then
  3. If is increasing in each variable and and are independent sets of random variables with for each , then and in particular Moreover, the th order statistics satisfy .
  4. If two sequences of random variables and , with for all each converge in distribution, then their limits satisfy .
  5. If , and are random variables such that and for all and such that , then .

Other properties

If and then (the random variables are equal in distribution).

Stochastic dominance

Stochastic dominance relations are a family of stochastic orderings used in decision theory:[1]

  • Zeroth-order stochastic dominance: if and only if for all realizations of these random variables and for at least one realization.
  • First-order stochastic dominance: if and only if for all and there exists such that .
  • Second-order stochastic dominance: if and only if for all , with strict inequality at some .

There also exist higher-order notions of stochastic dominance. With the definitions above, we have .

Multivariate stochastic order

An -valued random variable is less than an -valued random variable in the "usual stochastic order" if

Other types of multivariate stochastic orders exist. For instance the upper and lower orthant order which are similar to the usual one-dimensional stochastic order. is said to be smaller than in upper orthant order if

and is smaller than in lower orthant order if[2]

All three order types also have integral representations, that is for a particular order is smaller than if and only if for all in a class of functions .[3] is then called generator of the respective order.

Other dominance orders

The following stochastic orders are useful in the theory of random social choice. They are used to compare the outcomes of random social choice functions, in order to check them for efficiency or other desirable criteria.[4] The dominance orders below are ordered from the most conservative to the least conservative. They are exemplified on random variables over the finite support {30,20,10}.

Deterministic dominance, denoted , means that every possible outcome of is at least as good as every possible outcome of : for all x < y, . In other words: . For example, .

Bilinear dominance, denoted , means that, for every possible outcome, the probability that yields the better one and yields the worse one is at least as large as the probability the other way around: for all x<y, For example, .

Stochastic dominance (already mentioned above), denoted , means that, for every possible outcome x, the probability that yields at least x is at least as large as the probability that yields at least x: for all x, . For example, .

Pairwise-comparison dominance, denoted , means that the probability that that yields a better outcome than is larger than the other way around: . For example, .

Downward-lexicographic dominance, denoted , means that has a larger probability than of returning the best outcome, or both and have the same probability to return the best outcome but has a larger probability than of returning the second-best best outcome, etc. Upward-lexicographic dominance is defined analogously based on the probability to return the worst outcomes. See lexicographic dominance.

Other stochastic orders

Hazard rate order

The hazard rate of a non-negative random variable with absolutely continuous distribution function and density function is defined as

Given two non-negative variables and with absolutely continuous distribution and , and with hazard rate functions and , respectively, is said to be smaller than in the hazard rate order (denoted as ) if

for all ,

or equivalently if

is decreasing in .

Likelihood ratio order

Let and two continuous (or discrete) random variables with densities (or discrete densities) and , respectively, so that increases in over the union of the supports of and ; in this case, is smaller than in the likelihood ratio order ().

Variability orders

If two variables have the same mean, they can still be compared by how "spread out" their distributions are. This is captured to a limited extent by the variance, but more fully by a range of stochastic orders.[citation needed]

Convex order

Convex order is a special kind of variability order. Under the convex ordering, is less than if and only if for all convex , .

Laplace transform order

Laplace transform order compares both size and variability of two random variables. Similar to convex order, Laplace transform order is established by comparing the expectation of a function of the random variable where the function is from a special class: . This makes the Laplace transform order an integral stochastic order with the generator set given by the function set defined above with a positive real number.

Realizable monotonicity

Considering a family of probability distributions on partially ordered space indexed with (where is another partially ordered space, the concept of complete or realizable monotonicity may be defined. It means, there exists a family of random variables on the same probability space, such that the distribution of is and almost surely whenever . It means the existence of a monotone coupling.[5]

See also

References

  1. ^ Perrakis, Stylianos (2019). Stochastic Dominance Option Pricing. Palgrave Macmillan, Cham. doi:10.1007/978-3-030-11590-6_1. ISBN 978-3-030-11589-0.
  2. ^ Definition 2.3 in Thibaut Lux, Antonin Papapantoleon: "Improved Fréchet-Hoeffding bounds for d-copulas and applications in model-free finance." Annals of Applied Probability 27, 3633-3671, 2017
  3. ^ Alfred Müller, Dietrich Stoyan: Comparison methods for stochastic models and risks. Wiley, Chichester 2002, ISBN 0-471-49446-1, S. 2.
  4. ^ Felix Brandt (2017-10-26). "Roling the Dice: Recent Results in Probabilistic Social Choice". In Endriss, Ulle (ed.). Trends in Computational Social Choice. Lulu.com. ISBN 978-1-326-91209-3.
  5. ^ Fill, James Allen; Machida, Motoya (2001). "Stochastic Monotonicity and Realizable Monotonicity". The Annals of Probability. 29 (2): 938–978. ISSN 0091-1798.

Bibliography

  • M. Shaked and J. G. Shanthikumar, Stochastic Orders and their Applications, Associated Press, 1994.
  • E. L. Lehmann. Ordered families of distributions. The Annals of Mathematical Statistics, 26:399–419, 1955.

Read other articles:

Diskografi The PoliceThe Police dalam konser di Madison Square Garden, New York City, 1 Agustus 2007Album studio5Album rekaman langsung2Album kompilasi4Album video14Singel25Album soundtrack4 Diskografi band rock Inggris The Police. Album Album studio Tahun Detail album Posisi puncak Sertifikasi UK[1] AUS[2] AUT[3] CAN[4] NZL[5] NOR[6] SWE[7] US[8] 1978 Outlandos d'Amour Rilis: November 1978 Label: A&M 6 — — 22 6 — — 2...

 

Juan Carlos Valerón Informasi pribadiNama lengkap Juan Carlos Valerón SantanaTanggal lahir 17 Juni 1975 (umur 48)Tempat lahir Arguineguín, SpanyolTinggi 1,80 m (5 ft 11 in)Posisi bermain Gelandang serangInformasi klubKlub saat ini Las PalmasNomor 21Karier junior Arguineguín Las PalmasKarier senior*Tahun Tim Tampil (Gol)1994–1995 Las Palmas B 25 (7)1995–1997 Las Palmas 54 (2)1997–1998 Mallorca 36 (3)1998–2000 Atlético Madrid 65 (7)2000–2013 Deportivo La Coru...

 

Radio station in Ashland, Ohio WNCOAshland, OhioBroadcast areaAshland CountyRichland CountyKnox CountyFrequency1340 kHzBrandingFox Sports Radio 1340ProgrammingLanguage(s)EnglishFormatSportsAffiliationsFox Sports RadioPremiere NetworksAshland University EaglesOwnershipOwneriHeartMedia, Inc.(iHM Licenses, LLC)Sister stationsWFXN-FMWMANWMAN-FMWNCO-FMWSWRWXXFWYHTHistoryFirst air dateMay 18, 1950 (1950-05-18) (as WATG)Former call signsWATG (1950–1959)Call sign meaningNorth Central...

У этого термина существуют и другие значения, см. Рысь (значения). Канадская рысь Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:Челюстнороты�...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. الفلسفة الأمريكية الأصلية هي فلسفة السكان الأصليين للأمريكتين. الفيلسوف الأصلي: ساكن أصلي –أو متصل بالسكان الأصليين– متفلسف، عميق العلم بتاريخ الأصليين وثقافتهم ولغتهم وت...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Para otros usos de este término, véase Albania (desambiguación). República de AlbaniaRepublika e Shqipërisë  (albanés)Bandera Escudo Lema: Ti, Shqipëri, më jep nderë, më jep emrin Shqiptar(en albanés: «Tú, Albania, dame honra, dame el nombre albanés») Himno: Hymni i Flamurit(en albanés: «Himno a la bandera») ¿Problemas al reproducir este archivo? Capital(y ciudad más poblada) Tirana 41°19′44″N 19°49′04″E / 41.328888888889, 19.817777777...

 

Laura TheuxLaura pada tahun 2016LahirNi Made Laura Theux28 Maret 1996 (umur 28)Bali, IndonesiaPekerjaanPemeranmodelpenyanyiTahun aktif2012—sekarangSuami/istriIndra Brotolaras ​(m. 2023)​ Ni Made Laura Theux (lahir 28 Maret 1996) merupakan pemeran, model, dan penyanyi Indonesia keturunan Prancis dan Bali.[1] Kehidupan awal Laura merupakan anak sulung dari dua bersaudara, dari pasangan Eric Theux yang berdarah Prancis dan Ni Ketut Parwati yang b...

 

Turkish singer SerhatSerhat performing in 2015BornAhmet Serhat Hacıpaşalıoğlu (1964-10-24) 24 October 1964 (age 59)Istanbul, TurkeyOccupations Singer songwriter producer television presenter Years active1994–presentMusical careerGenres Pop dance disco Latin novelty Labels End Music Planetworks CAP-Sounds Musical artistWebsiteserhatofficial.com Ahmet Serhat Hocapaşalioğlu (born 24 October 1964), known as Serhat, is a Turkish singer, songwriter, producer and television presen...

Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёры...

 

Islam menurut negara Afrika Aljazair Angola Benin Botswana Burkina Faso Burundi Kamerun Tanjung Verde Republik Afrika Tengah Chad Komoro Republik Demokratik Kongo Republik Kongo Djibouti Mesir Guinea Khatulistiwa Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Pantai Gading Kenya Lesotho Liberia Libya Madagaskar Malawi Mali Mauritania Mauritius Maroko Mozambik Namibia Niger Nigeria Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland Afrika Selatan ...

 

Dalam nama yang mengikuti kebiasaan penamaan Slavia Timur ini, patronimiknya adalah Vladimirovna. Natalya SindeyevaSindeyeva at the MediaMakers conferenceНаталья Синдеева Lahir11 Juni 1971  (age 52)Michurinsk (Uni Soviet) AlmamaterStockholm School of EconomicsMichurinsk State Pedagogical Institute PekerjaanPublisher, wartawan, media manager Suami/istriAlexander Vinokurov PenghargaanM100 Media Award (Tanit Koch, 2017) Signature Natalya Vladimir...

Insect trapping device A hanging trap in a forest Flight interception trap deployed in a research project investigating effects of light pollution on insects A flight interception trap (or FIT) is a widely used trapping, killing, and preserving system for flying insects. It is especially well-suited for collecting beetles, since these animals usually drop themselves after flying into an object,[1] rather than flying upward (in which case a Malaise trap is a better option). Flight Inte...

 

  لمعانٍ أخرى، طالع إنجيل يوحنا (توضيح). إنجيل يوحنا بردية 52 وهي أقدم نسخة معروفة عن إنجيل يوحنا، تعود لحوالي عام 125م.بردية 52 وهي أقدم نسخة معروفة عن إنجيل يوحنا، تعود لحوالي عام 125م. المعلومات العامة عدد الإصحاحات 21 الكاتب في الإنجيل التلميذ المحبوب (يوحنا الإنجيلي) الك�...

 

一中同表,是台灣处理海峡两岸关系问题的一种主張,認為中华人民共和国與中華民國皆是“整個中國”的一部份,二者因為兩岸現狀,在各自领域有完整的管辖权,互不隶属,同时主張,二者合作便可以搁置对“整个中國”的主权的争议,共同承認雙方皆是中國的一部份,在此基礎上走向終極統一。最早是在2004年由台灣大學政治学教授張亞中所提出,希望兩岸由一中各表�...

Media production company Happy Madison Productions, Inc.Logo used since 2005Company typePrivateIndustry Film production Television production FoundedDecember 10, 1999; 24 years ago (1999-12-10)FounderAdam SandlerHeadquarters Los Angeles, California, U.S. Manchester, New Hampshire, U.S. (parent company) Key people Adam Sandler (CEO) Allen Covert Jack Giarraputo (President) Tim Herlihy Heather Parry Scott Sandler Barry Bernardi Steve Koren Mark O'Keefe Seth Gordon Timothy Dowl...

 

Study of the art and science of voice instruction For instrumental technique, see Musical technique. The anatomy of the vocal foldsLaryngoscopic view of the vocal foldsAbduction and adductionDetailsPrecursorSixth pharyngeal archNerveN. laryngeus recurrens and N. laryngeus superiorIdentifiersLatinplica vocalisAnatomical terminology[edit on Wikidata] Vocal pedagogy is the study of the art and science of voice instruction. It is used in the teaching of singing and assists in defining what si...

 

此條目正在由条目协作计划进行协作完善。若您熟悉英語和条目内容,欢迎报名并参与协作扩充条目,或参与讨论了解协作进度。请遵守协作须知,以及维基百科关于版权、翻译、编辑摘要等方针指引。 此條目需要补充更多来源。 (2019年8月27日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(�...

Teatro ColomboUbicazioneStato Italia LocalitàGenova IndirizzoVia Portoria 10,[1] Genova Dati tecniciCapienza600[2] posti RealizzazioneCostruzione1852 Inaugurazione1852 Demolizione1899 Modifica dati su Wikidata · Manuale Il Teatro Colombo è stato un teatro italiano, con sede a Genova. Inaugurato nel 1852, aveva sede nel quartiere di Portoria. Terminò le attività alla fine dell'Ottocento. Indice 1 Storia 2 Descrizione 3 Note 4 Bibliografia 5 Altri progetti 6 Colle...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2023) اعتبرت البنائية نموذجًا سائدًا، أو برنامجًا بحثيًا،[1] في مجال تعليم العلوم منذ الثمانينيات.[2][3] يستخدم مصطلح البنائية على نطاق واسع في العديد �...