Spectral element method

In the numerical solution of partial differential equations, a topic in mathematics, the spectral element method (SEM) is a formulation of the finite element method (FEM) that uses high-degree piecewise polynomials as basis functions. The spectral element method was introduced in a 1984 paper[1] by A. T. Patera. Although Patera is credited with development of the method, his work was a rediscovery of an existing method (see Development History)

Discussion

The spectral method expands the solution in trigonometric series, a chief advantage being that the resulting method is of a very high order. This approach relies on the fact that trigonometric polynomials are an orthonormal basis for .[2] The spectral element method chooses instead a high degree piecewise polynomial basis functions, also achieving a very high order of accuracy. Such polynomials are usually orthogonal Chebyshev polynomials or very high order Lagrange polynomials over non-uniformly spaced nodes. In SEM computational error decreases exponentially as the order of approximating polynomial increases, therefore a fast convergence of solution to the exact solution is realized with fewer degrees of freedom of the structure in comparison with FEM. In structural health monitoring, FEM can be used for detecting large flaws in a structure, but as the size of the flaw is reduced there is a need to use a high-frequency wave. In order to simulate the propagation of a high-frequency wave, the FEM mesh required is very fine resulting in increased computational time. On the other hand, SEM provides good accuracy with fewer degrees of freedom. Non-uniformity of nodes helps to make the mass matrix diagonal, which saves time and memory and is also useful for adopting a central difference method (CDM). The disadvantages of SEM include difficulty in modeling complex geometry, compared to the flexibility of FEM.

Although the method can be applied with a modal piecewise orthogonal polynomial basis, it is most often implemented with a nodal tensor product Lagrange basis.[3] The method gains its efficiency by placing the nodal points at the Legendre-Gauss-Lobatto (LGL) points and performing the Galerkin method integrations with a reduced Gauss-Lobatto quadrature using the same nodes. With this combination, simplifications result such that mass lumping occurs at all nodes and a collocation procedure results at interior points.

The most popular applications of the method are in computational fluid dynamics[3] and modeling seismic wave propagation.[4]

A-priori error estimate

The classic analysis of Galerkin methods and Céa's lemma holds here and it can be shown that, if is the solution of the weak equation, is the approximate solution and :

where is related to the discretization of the domain (ie. element length), is independent from , and is no larger than the degree of the piecewise polynomial basis. Similar results can be obtained to bound the error in stronger topologies. If

As we increase , we can also increase the degree of the basis functions. In this case, if is an analytic function:

where depends only on .

The Hybrid-Collocation-Galerkin possesses some superconvergence properties.[5] The LGL form of SEM is equivalent,[6] so it achieves the same superconvergence properties.

Development History

Development of the most popular LGL form of the method is normally attributed to Maday and Patera.[7] However, it was developed more than a decade earlier. First, there is the Hybrid-Collocation-Galerkin method (HCGM),[8][5] which applies collocation at the interior Lobatto points and uses a Galerkin-like integral procedure at element interfaces. The Lobatto-Galerkin method described by Young[9] is identical to SEM, while the HCGM is equivalent to these methods.[6] This earlier work is ignored in the spectral literature.

  • G-NI or SEM-NI are the most used spectral methods. The Galerkin formulation of spectral methods or spectral element methods, for G-NI or SEM-NI respectively, is modified and Gauss-Lobatto integration is used instead of integrals in the definition of the bilinear form and in the functional . Their convergence is a consequence of Strang's lemma.
  • SEM is a Galerkin based FEM (finite element method) with Lagrange basis (shape) functions and reduced numerical integration by Lobatto quadrature using the same nodes.
  • The pseudospectral method, orthogonal collocation, differential quadrature method, and G-NI are different names for the same method. These methods employ global rather than piecewise polynomial basis functions. The extension to a piecewise FEM or SEM basis is almost trivial.[6]
  • The spectral element method uses a tensor product space spanned by nodal basis functions associated with Gauss–Lobatto points. In contrast, the p-version finite element method spans a space of high order polynomials by nodeless basis functions, chosen approximately orthogonal for numerical stability. Since not all interior basis functions need to be present, the p-version finite element method can create a space that contains all polynomials up to a given degree with fewer degrees of freedom.[10] However, some speedup techniques possible in spectral methods due to their tensor-product character are no longer available. The name p-version means that accuracy is increased by increasing the order of the approximating polynomials (thus, p) rather than decreasing the mesh size, h.
  • The hp finite element method (hp-FEM) combines the advantages of the h and p refinements to obtain exponential convergence rates.[11]

Notes

  1. ^ Patera, A. T. (1984). "A spectral element method for fluid dynamics - Laminar flow in a channel expansion". Journal of Computational Physics. 54 (3): 468–488. Bibcode:1984JCoPh..54..468P. doi:10.1016/0021-9991(84)90128-1.
  2. ^ Muradova, Aliki D. (2008). "The spectral method and numerical continuation algorithm for the von Kármán problem with postbuckling behaviour of solutions". Adv Comput Math. 29 (2): 179–206, 2008. doi:10.1007/s10444-007-9050-7. hdl:1885/56758. S2CID 46564029.
  3. ^ a b Karniadakis, G. and Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics, Oxford Univ. Press, (2013), ISBN 9780199671366
  4. ^ Komatitsch, D. and Villote, J.-P.: “The Spectral Element Method: An Efficient Tool to Simulate the Seismic Response of 2D and 3D Geologic Structures,” Bull. Seismological Soc. America, 88, 2, 368-392 (1998)
  5. ^ a b Wheeler, M.F.: “A C0-Collocation-Finite Element Method for Two-Point Boundary Value and One Space Dimension Parabolic Problems,” SIAM J. Numer. Anal., 14, 1, 71-90 (1977)
  6. ^ a b c Young, L.C., “Orthogonal Collocation Revisited,” Comp. Methods in Appl. Mech. and Engr. 345 (1) 1033-1076 (Mar. 2019), doi.org/10.1016/j.cma.2018.10.019
  7. ^ Maday, Y. and Patera, A. T., “Spectral Element Methods for the Incompressible Navier-Stokes Equations” In State-of-the-Art Surveys on Computational Mechanics, A.K. Noor, editor, ASME, New York (1989).
  8. ^ Diaz, J., “A Collocation-Galerkin Method for the Two-point Boundary Value Problem Using Continuous Piecewise Polynomial Spaces,” SIAM J. Num. Anal., 14 (5) 844-858 (1977) ISSN 0036-1429
  9. ^ Young, L.C., “A Finite-Element Method for Reservoir Simulation,” Soc. Petr. Engrs. J. 21(1) 115-128, (Feb. 1981), paper SPE 7413 presented Oct. 1978, doi.org/10.2118/7413-PA
  10. ^ Barna Szabó and Ivo Babuška, Finite element analysis, John Wiley & Sons, Inc., New York, 1991. ISBN 0-471-50273-1
  11. ^ P. Šolín, K. Segeth, I. Doležel: Higher-order finite element methods, Chapman & Hall/CRC Press, 2003. ISBN 1-58488-438-X

Read other articles:

Untuk badan gereja lain dengan nama yang serupa, lihat Christian Reformed Churches of Australia dan Christian Reformed Church in North America. Christelijke Gereformeerde KerkenPenggolonganProtestanTeologiEvangelikal, ReformedBentukpemerintahanPresbiterianPerhimpunanInternational Conference of Reformed ChurchesWilayahBelandaDidirikan1892Terpisah dariGereja Reformasi BelandaPecahanReformed CongregationsJemaat181Umat74.319 pada tahun 2013 Christelijke Gereformeerde Kerken (Gereja-gereja Gerefor...

 

 

American seven-man gridiron football league A7FLClassificationSemi-professionalSportAmerican footballFounded2014First season2015CEOSener KorkusuzPresidentRyan DePaulMottoThe Game America Wants[1]No. of teams24Country United StatesMost recentchampion(s)Las Vegas Insomniacs (1st title) (2023)Most titlesPaterson U (3 titles)TV partner(s)DAZNStadium (sports network)FITE TVSponsor(s)Cricket WirelessOfficial websiteA7FL.com The American 7s Football League (A7FL) is a semi-professional ...

 

 

Halaman ini berisi artikel tentang tokoh antagonis dalam Kitab Ester. Untuk penasihat Firaun dalam Al-Qur'an, lihat Haman (tokoh Al-Qur'an). Untuk kegunaan lain, lihat Haman (disambiguasi). Haman meminta belas kasihan dari Ratu Ester, karya Rembrandt Haman (juga dikenal dengan nama Haman orang Agag) adalah seorang sosok antagonis di dalam Kitab Ester, salah satu kitab dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen.[1] Haman dalam Alkitab Ibrani Ia diceritakan sebagai seor...

العلاقات الإكوادورية الهندية الإكوادور الهند   الإكوادور   الهند تعديل مصدري - تعديل   العلاقات الإكوادورية الهندية هي العلاقات الثنائية التي تجمع بين الإكوادور والهند.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ال...

 

 

Professional basketball competition Turkish Airlines Euroleague1Paris-Bercy in Paris hosted the Final FourSeason2009–10Duration29 September 2009 – 9 May 2010Number of teams24 (regular season)30 (total)Regular seasonSeason MVP Miloš TeodosićFinalsChampions Regal FC Barcelona (2nd title)  Runners-up OlympiacosThird place CSKA MoscowFourth place PartizanFinal Four MVP Juan Carlos NavarroStatistical leadersPoints Linas Kleiza 17.1Rebounds Travis Watson 9.5Assists Omar Cook 5.9Inde...

 

 

Legalization of marijuana in the United States Legality of cannabis in the United States   Legal for recreational use   Legal for medical use   Illegal  D  Decriminalized Notes: · Reflects law of states and territories, including laws which have not yet gone into effect. Does not reflect federal, tribal, or local laws. · Hemp and hemp-derived products have been legal since the enactment of the 2018 Farm Bill. vte In the United States, the non-medical ...

Pour les articles homonymes, voir Graham. Martha Graham Martha Graham en 1948. Données clés Naissance 11 mai 1894 Comté d'Allegheny, en Pennsylvanie (États-Unis) Décès 1er avril 1991 (à 96 ans) New York (États-Unis) Activité principale Chorégraphe, danseuse Style Danse moderne Lieux d'activité New York Années d'activité 1916-1987 Formation Denishawn School Maîtres Ruth Saint Denis Élèves Merce Cunningham, Paul Taylor, Twyla Tharp Récompenses American Dance Festival Awar...

 

 

Class of psychoactive drugs that produce empathic experiences This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Empathogen–entactogen – news · newspapers · books · scholar · JSTOR (January 2015) (Learn how and when to remove this message) A selection of MDMA pills, which are often nicknamed Ecstasy or E Part...

 

 

Intergovernmental naval operations This section needs to be updated. The reason given is: List of countries presently contributing is out of date. Please help update this article to reflect recent events or newly available information. (December 2021) Ships assigned to Combined Task Force One Five Zero (CTF-150) assemble in a formation in the Gulf of Oman, 6 May 2004 Combined Task Force 150 (CTF-150) is a multinational coalition naval task force working under the 34-nation coalition of Combin...

American architect Charles C. KembleBorn1831New YorkNationalityAmericanOccupationArchitect Woodburn Hall, West Virginia University, Morgantown, 1874. C. C. Kemble (born 1831) was a prominent architect in West Virginia during the mid-to-late 19th century. Biography Charles C. Kemble was born in New York around 1831, but little is known about his early life. He entered Bucknell University in 1856, but did not graduate.[1] By 1868, he was working for Joseph W. Kerr in Pittsburgh.[2&#...

 

 

  لمعانٍ أخرى، طالع بيكون (توضيح).   بيكون (بالإسبانية: Picón)‏[1]   - بلدية -    بيكون (ثيوداد ريال) تقسيم إداري البلد إسبانيا  [2] المقاطعة مقاطعة ثيوداد ريال خصائص جغرافية إحداثيات 39°02′59″N 4°03′37″W / 39.049722222222°N 4.0602777777778°W / 39.049722222222; -4.0...

 

 

Island in the Philippines Calayan IslandCalayan IslandLocation within the PhilippinesGeographyCoordinates19°19′37″N 121°27′57″E / 19.32694°N 121.46583°E / 19.32694; 121.46583ArchipelagoBabuyan IslandsAdjacent toBalintang ChannelLuzon StraitArea196 km2 (76 sq mi)[1]Highest elevation499 m (1637 ft)[1]Highest pointMount CalayanAdministrationPhilippinesRegionCagayan ValleyProvinceCagayanMunicipalityCalayanBaran...

Warren HoburgLahirWarren Woodrow Hoburg16 September 1985 (umur 38)Pittsburgh, Pennsylvania, ASStatusAktifAlmamaterInstitut Teknologi Massachusetts (BS)Universitas California, Berkeley (MS, PhD)Karier luar angkasaAntariksawan NASAPekerjaan saat iniAsisten profesorSeleksiNASA Group 22 Karier ilmiahBidangTeknik elektro, Ilmu komputerDisertasiAircraft Design Optimization as a Geometric Program (2013) Warren Woodrow Woody Hoburg (lahir 16 September 1985) adalah seorang insinyur Amerika ...

 

 

Subcategory of memory Recognition memory, a subcategory of explicit memory, is the ability to recognize previously encountered events, objects, or people.[1] When the previously experienced event is reexperienced, this environmental content is matched to stored memory representations, eliciting matching signals.[2] As first established by psychology experiments in the 1970s, recognition memory for pictures is quite remarkable: humans can remember thousands of images at high ac...

 

 

Cet article est une ébauche concernant le Concours Eurovision de la chanson et l’Albanie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) ; pour plus d’indications, visitez le projet Eurovision. Albanieau Concours Eurovision 2011 Données clés Pays  Albanie Chanson Kënga ime Interprète Aurela Gaçe Compositeur Shpëtim Saraçi Parolier Sokol Marsi Langue Albanais Sélection nationale Type de sélection Émission télévisée Date 25 décembre 2010...

English footballer This article is about the English footballer. For other people, see Richard O'Donnell (disambiguation). Richard O'Donnell O'Donnell in 2021Personal informationFull name Richard Mark O'Donnell[1]Date of birth (1988-09-12) 12 September 1988 (age 35)[2]Place of birth Sheffield, EnglandHeight 6 ft 2 in (1.88 m)[3]Position(s) GoalkeeperTeam informationCurrent team BlackpoolNumber 1Youth career0000–2006 Sheffield WednesdaySenior caree...

 

 

Bibliothèque nationale de FranceTypStatligt bolagHuvudkontor Paris, FrankrikeHuvudmanFrankrikes kulturministeriumÖvrigtWebbplatswww.bnf.fr Bibliothèque nationale de France (BnF) i Paris är ett av världens största bibliotek och Frankrikes nationalbibliotek.[1] Det har sitt ursprung i den bibliotekssamling som Karl V grundade cirka 1365. Dagens bibliotek har sitt centralbibliotek i 13:e arrondissementet och filialer på ytterligare fem platser runt staden. Historik Äldre tid Grunden utg�...

 

 

Probability distribution Laplace Probability density function Cumulative distribution functionParameters μ {\displaystyle \mu } location (real) b > 0 {\displaystyle b>0} scale (real)Support R {\displaystyle \mathbb {R} } PDF 1 2 b exp ⁡ ( − | x − μ | b ) {\displaystyle {\frac {1}{2b}}\exp \left(-{\frac {|x-\mu |}{b}}\right)} CDF { 1 2 exp ⁡ ( x − μ b ) if  x ≤ μ 1 − 1 2 exp ⁡ ( − x − &...

1832 1837 Élections générales britanniques de 1835 658 sièges de la Chambre des communes (Majorité absolue : 330 sièges) 6 janvier au 6 février 1835 Type d’élection Élections législatives Corps électoral et résultats Votants 611 137 Parti whig – Lord Melbourne Voix 349 868 57,3 %   9,7 Sièges obtenus 385  56 Parti conservateur – Robert Peel Voix 261 269 42,8 %   13,6 Sièges obtenus 273 ...

 

 

Tree which includes all vertices of a graph For the network protocol, see Spanning Tree Protocol. For other uses, see Spanning tree (disambiguation). A spanning tree (blue heavy edges) of a grid graph In the mathematical field of graph theory, a spanning tree T of an undirected graph G is a subgraph that is a tree which includes all of the vertices of G.[1] In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree (see abou...