His research deals with complex dynamics and dynamics of automorphisms of algebraic surfaces. He examined the algebraic structure of Cremona groups (i.e. groups of birational automorphisms of -dimensional projective spaces over a field ) and showed with Stéphane Lamy that for an algebraically closed field and for dimension =2 the Cremona group is not a simple group. In particular, if is the field of complex numbers and =2, the Cremona group contains an infinite non-countable family of different normal subgroups.
with Frank Loray: Holomorphic dynamics, Painlevé VI equation, and character varieties, Annales de l'Institut Fourier, Vol. 59, 2009, pp. 2927–2978, Arxiv
Bers and Hénon, Painlevé and Schroedinger, Duke Math. Journal, Vol. 149, 2009, pp. 411–460, Arxiv
with Antoine Chambert-Loir, Vincent Guedj: Quelques aspects des systèmes dynamiques polynomiaux, Panorama et Synthèse, Volume 30, Société Math. de France 2010
In Cantat's introduction, the chapter Quelques aspects des systèmes dynamiques polynomiaux, existence, exemples, rigidité , pp. 13–96, with Chambert-Loir: Dynamique p-adique (d'après les exposés de Jean-Christophe Yoccoz) , p. 295 (Arxiv)
with Abdelghani Zeghib: Holomorphic Actions, Kummer Examples, and Zimmer Program, Annales Scientifique de l'ENS, Vol. 45, 2012, pp. 447–489, Arxiv
Sur les groupes de transformations birationnelles des surfaces, Annals of Math., Vol. 174, 2012, pp. 299–334 JSTOR23030565
with Igor Dolgachev: Rational Surfaces with a Large Group of Automorphisms, J. Amer. Math. Soc., Vol. 25, 2012, pp. 863–905. Arxiv
Dynamics of automorphisms of compact complex surfaces, in: Frontiers in Complex Dynamics: In celebration of John Milnor's 80th birthday, Princeton Mathematical Series, Princeton University Press, 2012, pp. 463–514
with Stéphane Lamy: Normal subgroups of the Cremona group, Acta Mathematica, Vol. 210, 2013, pp. 31–94, Arxiv