Segre's theorem

to the definition of a finite oval: tangent, secants, is the order of the projective plane (number of points on a line -1)

In projective geometry, Segre's theorem, named after the Italian mathematician Beniamino Segre, is the statement:

This statement was assumed 1949 by the two Finnish mathematicians G. Järnefelt and P. Kustaanheimo and its proof was published in 1955 by B. Segre.

A finite pappian projective plane can be imagined as the projective closure of the real plane (by a line at infinity), where the real numbers are replaced by a finite field K. Odd order means that |K| = n is odd. An oval is a curve similar to a circle (see definition below): any line meets it in at most 2 points and through any point of it there is exactly one tangent. The standard examples are the nondegenerate projective conic sections.

In pappian projective planes of even order greater than four there are ovals which are not conics. In an infinite plane there exist ovals, which are not conics. In the real plane one just glues a half of a circle and a suitable ellipse smoothly.

The proof of Segre's theorem, shown below, uses the 3-point version of Pascal's theorem and a property of a finite field of odd order, namely, that the product of all the nonzero elements equals -1.

Definition of an oval

  • In a projective plane a set of points is called oval, if:
(1) Any line meets in at most two points.

If the line is an exterior (or passing) line; in case a tangent line and if the line is a secant line.

(2) For any point there exists exactly one tangent at P, i.e., .

For finite planes (i.e. the set of points is finite) we have a more convenient characterization:

  • For a finite projective plane of order n (i.e. any line contains n + 1 points) a set of points is an oval if and only if and no three points are collinear (on a common line).

Pascal's 3-point version

for the proof is the tangent at
Theorem

Let be an oval in a pappian projective plane of characteristic .
is a nondegenerate conic if and only if statement (P3) holds:

(P3): Let be any triangle on and the tangent at point to , then the points
are collinear.[1]
to the proof of the 3-point Pascal theorem
Proof

Let the projective plane be coordinatized inhomogeneously over a field such that is the tangent at , the x-axis is the tangent at the point and contains the point . Furthermore, we set (s. image)
The oval can be described by a function such that:

The tangent at point will be described using a function such that its equation is

Hence (s. image)

and

I: if is a non degenerate conic we have and and one calculates easily that are collinear.

II: If is an oval with property (P3), the slope of the line is equal to the slope of the line , that means:

and hence
(i): for all .

With one gets

(ii): and from we get
(iii):

(i) and (ii) yield

(iv): and with (iii) at least we get
(v): for all .

A consequence of (ii) and (v) is

.

Hence is a nondegenerate conic.

Remark: Property (P3) is fulfilled for any oval in a pappian projective plane of characteristic 2 with a nucleus (all tangents meet at the nucleus). Hence in this case (P3) is also true for non-conic ovals.[2]

Segre's theorem and its proof

Theorem

Any oval in a finite pappian projective plane of odd order is a nondegenerate conic section.

3-point version of Pascal's theorem, for the proof we assume
Segre's theorem: to its proof
Proof
[3]

For the proof we show that the oval has property (P3) of the 3-point version of Pascal's theorem.

Let be any triangle on and defined as described in (P3). The pappian plane will be coordinatized inhomogeneously over a finite field , such that and is the common point of the tangents at and . The oval can be described using a bijective function :

For a point , the expression is the slope of the secant Because both the functions and are bijections from to , and a bijection from onto , where is the slope of the tangent at , for we get

(Remark: For we have: )
Hence

Because the slopes of line and tangent both are , it follows that . This is true for any triangle .

So: (P3) of the 3-point Pascal theorem holds and the oval is a non degenerate conic.

References

  1. ^ E. Hartmann: Planar Circle Geometries, an Introduction to Moebius-, Laguerre- and Minkowski Planes. Skript, TH Darmstadt (PDF; 891 kB), p. 34.
  2. ^ E. Hartmann: Planar Circle Geometries, an Introduction to Moebius-, Laguerre- and Minkowski Planes. Skript, TH Darmstadt (PDF; 891 kB), p. 35.
  3. ^ E. Hartmann: Planar Circle Geometries, an Introduction to Moebius-, Laguerre- and Minkowski Planes. Skript, TH Darmstadt (PDF; 891 kB), p. 41.

Sources

  • B. Segre: Ovals in a finite projective plane, Canadian Journal of Mathematics 7 (1955), pp. 414–416.
  • G. Järnefelt & P. Kustaanheimo: An observation on finite Geometries, Den 11 te Skandinaviske Matematikerkongress, Trondheim (1949), pp. 166–182.
  • Albrecht Beutelspacher, Ute Rosenbaum: Projektive Geometrie. 2. Auflage. Vieweg, Wiesbaden 2004, ISBN 3-528-17241-X, p. 162.
  • P. Dembowski: Finite Geometries. Springer-Verlag, 1968, ISBN 3-540-61786-8, p. 149
  • Simeon Ball and Zsuzsa Weiner: An Introduction to Finite Geometry [1]

Read other articles:

Piala Dunia HokiOlahragaHoki lapanganDidirikan1971; 53 tahun lalu (1971)Musim awal1971Jumlah tim16BenuaInternasional (FIH)Juaraterkini Belgia (gelar pertama) (2018)Juara terbanyak Pakistan (4 gelar)Situs web resmiwww.fih.ch Piala Dunia Hoki Pria adalah kompetisi hoki lapangan internasional yang diselenggarakan oleh Federasi Hoki Internasional (FIH). Turnamen ini dimulai pada tahun 1971. Ini diadakan setiap empat tahun, menjembatani empat tahun antara Olimpiade Musim Panas. Pakistan adala...

 

Historic district in Nebraska, United States United States historic placeHoward Street Apartment DistrictU.S. National Register of Historic PlacesU.S. Historic district Rowhouses at 2302-2316 Dewey AvenueShow map of NebraskaShow map of the United StatesLocationOmaha, NebraskaCoordinates41°15′21.07″N 95°56′43.74″W / 41.2558528°N 95.9454833°W / 41.2558528; -95.9454833Built1885ArchitectmultipleArchitectural styleShingle Style, Prairie SchoolNRHP refe...

 

Penerbang Amerika Serikat mengenakan masker M-17, topeng dan tudung untuk perang nuklir, biologis, dan perang kimia Bioterorisme, atau serangan biologi, adalah tindakan pelepasan virus, bakteri atau agen biologi lainnya secara sengaja yang dapat membuat korbannya - orang, binatang atau tanaman - menjadi sakit atau bahkan mati.[1] Sejarah dan kajian terhadap bioterorisme Menurut Riedel, taktik serangan biologi telah lama digunakan untuk menyerang musuh melalui cara-cara yang relatif se...

Universitas Pertahanan Republik IndonesiaIndonesian Defense UniversityMotoPraditya Wiratama Nagara Bhakti (Sansekerta)Moto dalam bahasa IndonesiaPerwira Utama Berjiwa Patriot yang Cerdas dan Pintar serta Siap Berbakti untuk Negara dan BangsaJenisUniversitas NegeriDidirikan11 Maret 2009RektorJonni MahrozaAlamatKawasan IPSC Sentul, Sukahati, Kec. Citeureup, Bogor, Jawa Barat, 16810, IndonesiaKampusUrbanNama julukanUnhan atau Unhan RI atau IDUAfiliasiKementerian PertahananKementerian Pendid...

 

1966 United States Senate election in North Carolina ← 1960 November 8, 1966 1972 →   Nominee B. Everett Jordan John Shallcross Party Democratic Republican Popular vote 501,440 400,502 Percentage 55.59% 44.40% County resultsEverett:      50–60%      60–70%      70–80%      80–90%Shallcross:      50–60%     &...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

KV47Tomba di SiptahIsometria, planimetria e alzato di KV47CiviltàAntico Egitto UtilizzoTomba di Siptah EpocaNuovo Regno (XIX dinastia) LocalizzazioneStato Egitto LocalitàLuxor DimensioniSuperficie501,42 m² Altezzamax 5,3 m Larghezzamax 13,72 m Lunghezzamax 124,93 m Volume1560,95 m³ ScaviData scoperta1905 Date scavi1905-1907 OrganizzazioneTheodore Davis ArcheologoEdward Russell Ayrton AmministrazionePatrimonioTebe (Valle dei Re) EnteMinistero delle Antichità Sito webwww.thebanma...

 

La Madre seen from the northeast Sign for wilderness area, at road end above Willow Spring La Madre Mountain Wilderness Area consists of 47,180 acres (19,090 ha)[1] covering a part of Clark County, Nevada, that lies just west of the city of Las Vegas, between that city and Mount Charleston.[2] The area includes La Madre Mountain and several archaeological areas including the Brownstone Canyon Archaeological District. The area is administered by the Humboldt-Toiyabe Nation...

 

Fountain designed by Gian Lorenzo Bernini Fontana dei Quattro FiumiFountainThe Fountain of the Four Rivers with the Obelisco AgonaleDesignGian Lorenzo BerniniLocationPiazza Navona, Rome, ItalyClick on the map for a fullscreen viewCoordinates: 41°53′56″N 12°28′23″E / 41.89889°N 12.47306°E / 41.89889; 12.47306 Fontana dei Quattro Fiumi (Fountain of the Four Rivers) is a fountain in the Piazza Navona in Rome, Italy. It was designed in 1651 by Gian Lorenzo Bern...

Miguel Gregorio Antonio Ignacio Hidalgo y Costilla Gallаga Mandarte y Villaseñor Miguel Gregorio Antonio Ignacio Hidalgo y Costilla Gallаga Mandarte y Villaseñor (Pénjamo, 8 maggio 1753 – Chihuahua, 30 luglio 1811) è stato un rivoluzionario e religioso messicano. Conosciuto come Cura Hidalgo, Padre Hidalgo o Padre della Patria, è considerato l'iniziatore della guerra d'indipendenza del Messico. Indice 1 Inizi 2 La lotta per l'indipendenza 3 Cattura e morte 3.1 Cattura 3.2 Hidalgo pro...

 

Untuk pembalap motor Italia, lihat Matteo Ferrari (pembalap motor). Matteo Ferrari Informasi pribadiNama lengkap Matteo FerrariTanggal lahir 5 Desember 1979 (umur 44)Tempat lahir Aflou, AljazairTinggi 188 cm (6 ft 2 in)[1]Posisi bermain Bek tengahKarier junior1995–1996 SPAL1996–1997 InternazionaleKarier senior*Tahun Tim Tampil (Gol)1997–1998 Genoa 3 (0)1998–1999 Lecce 13 (0)1999–2001 Internazionale 19 (0)1999–2000 → Bari (pinjaman) 26 (0)2001–2004 P...

 

Village in Spain You can help expand this article with text translated from the corresponding article in Spanish. (August 2011) Click [show] for important translation instructions. View a machine-translated version of the Spanish article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into ...

Group of Oto-Manguean languages of southern Mexico Not to be confused with Mazahua language. MazatecEn NgixoRegionMexico, states of Oaxaca, Puebla and VeracruzEthnicityMazatecNative speakers240,000 (2020 census)[1]Language familyOto-Manguean PopolocanMazatecOfficial statusOfficial language inIn Mexico through the General Law of Linguistic Rights of Indigenous Peoples (in Spanish).Language codesISO 639-3Variously:maa – Tecóatlmaj – Jalapamaq –&...

 

American radio host This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (April 2018) (Learn how and when to remove this message) Mike ChurchBorn1962 (age 61–62)United StatesOccupationRadio talk show hostWebsitewww.mikechurch.com Mike Church (born 1962) is an Ame...

 

An editor has performed a search and found that sufficient sources exist to establish the subject's notability. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 1794 Massachusetts gubernatorial election – news · newspapers · books · scholar · JSTOR (May 2024) (Learn how and when to remove this message) Election for Governor of Massachusetts 1794 Massachusetts gubern...

مقبض خنجر مغولي من حجر اليشب مُطعّم بالذهب والياقوت والزمرد. النحت على الحجر الصلب هو مصطلح عام في تاريخ الفن وعلم الآثار يشير إلى النحت الفني غالبًا على أحجار شبه كريمة وأيضًا على الأحجار الكريمة مثل اليشب، والبلّور الصخري (الكوارتز النقي)، والعقيق والجزع والسربنتين والع...

 

Permulaan teks Kitab Injil Santo Kutbertus, juga dikenal sebagai Injil Stonyhurst atau Injil Santo Kutbertus dari Santo Yohanes, adalah sebuah kitab injil awal abad ke-8, yang ditulis dalam bahasa Latin. Penjilidan kulit berhiasnya adalah penjilidan buku Barat terawal yang diketahui yang masih ada Referensi Avrin, Leila, Scribes, Script, and Books, revised edn. 2010 (1st edn. 1991), ALA Editions, ISBN 0-8389-1038-6, ISBN 978-0-8389-1038-2, google books Battiscombe, C. F. (ed), The Relics of S...

 

  提示:此条目页的主题不是世界和平日。 國際和平日聯合國會旗正式名稱国际和平日参与者所有聯合國會員國類型聯合國紀念日活動世界各國活動日期9月21日 每年的9月21日是国际和平日(英語:International Day of Peace)。该纪念日由联合国大会于1981年设立。 歷史 1981年11月30日,联合国大会通过36/67号决议[1],决定将九月份大会常会开幕的日子,即9月的第三个星...

ザンジバル王国 سلطنة زنجبار‎(アラビア語)Usultani wa Zanzibar(スワヒリ語)Sultanate of Zanzibar(英語) ← 1963年 - 1964年 → → (国旗) (国章) 国歌: National March for the Sultan of Zanzibar 公用語 アラビア語スワヒリ語英語 宗教 イスラム教 首都 ザンジバルシティ スルターン 1963年7月1日 - 1964年1月12日 ジャムシッド・ビン・アブドゥッラー 首相 1961年6月5日 - 1964年6月1...

 

いいだ ちょうこ飯田 蝶子 1947年本名 茂原 てふ (しげはら ちょう)旧姓:飯田別名義 飯田 長子 (いいだ ちょうこ)水木 歌門 (みずき かもん、名取)生年月日 (1897-04-15) 1897年4月15日没年月日 (1972-12-26) 1972年12月26日(75歳没)出生地 日本・東京府東京市浅草区堀端(現在の東京都台東区浅草)死没地 日本・東京都豊島区職業 女優ジャンル 映画、テレビドラマ活動期�...