Scott–Potter set theory

An approach to the foundations of mathematics that is of relatively recent origin, Scott–Potter set theory is a collection of nested axiomatic set theories set out by the philosopher Michael Potter, building on earlier work by the mathematician Dana Scott and the philosopher George Boolos.

Potter (1990, 2004) clarified and simplified the approach of Scott (1974), and showed how the resulting axiomatic set theory can do what is expected of such theory, namely grounding the cardinal and ordinal numbers, Peano arithmetic and the other usual number systems, and the theory of relations.

ZU etc.

Preliminaries

This section and the next follow Part I of Potter (2004) closely. The background logic is first-order logic with identity. The ontology includes urelements as well as sets, which makes it clear that there can be sets of entities defined by first-order theories not based on sets. The urelements are not essential in that other mathematical structures can be defined as sets, and it is permissible for the set of urelements to be empty.

Some terminology peculiar to Potter's set theory:

  • ι is a definite description operator and binds a variable. (In Potter's notation the iota symbol is inverted.)
  • The predicate U holds for all urelements (non-collections).
  • ιxΦ(x) exists iff (∃!x)Φ(x). (Potter uses Φ and other upper-case Greek letters to represent formulas.)
  • {x : Φ(x)} is an abbreviation for ιy(not U(y) and (∀x)(x ∈ y ⇔ Φ(x))).
  • a is a collection if {x : xa} exists. (All sets are collections, but not all collections are sets.)
  • The accumulation of a, acc(a), is the set {x : x is an urelement or ba (xb or xb)}.
  • If ∀vV(v = acc(Vv)) then V is a history.
  • A level is the accumulation of a history.
  • An initial level has no other levels as members.
  • A limit level is a level that is neither the initial level nor the level above any other level.
  • A set is a subcollection of some level.
  • The birthday of set a, denoted V(a), is the lowest level V such that aV.

Axioms

The following three axioms define the theory ZU.

Creation: ∀VV' (VV' ).

Remark: There is no highest level, hence there are infinitely many levels. This axiom establishes the ontology of levels.

Separation: An axiom schema. For any first-order formula Φ(x) with (bound) variables ranging over the level V, the collection {xV : Φ(x)} is also a set. (See Axiom schema of separation.)

Remark: Given the levels established by Creation, this schema establishes the existence of sets and how to form them. It tells us that a level is a set, and all subsets, definable via first-order logic, of levels are also sets. This schema can be seen as an extension of the background logic.

Infinity: There exists at least one limit level. (See Axiom of infinity.)

Remark: Among the sets Separation allows, at least one is infinite. This axiom is primarily mathematical, as there is no need for the actual infinite in other human contexts, the human sensory order being necessarily finite. For mathematical purposes, the axiom "There exists an inductive set" would suffice.

Further existence premises

The following statements, while in the nature of axioms, are not axioms of ZU. Instead, they assert the existence of sets satisfying a stated condition. As such, they are "existence premises," meaning the following. Let X denote any statement below. Any theorem whose proof requires X is then formulated conditionally as "If X holds, then..." Potter defines several systems using existence premises, including the following two:

  • ZfU =df ZU + Ordinals;
  • ZFU =df Separation + Reflection.

Ordinals: For each (infinite) ordinal α, there exists a corresponding level Vα.

Remark: In words, "There exists a level corresponding to each infinite ordinal." Ordinals makes possible the conventional Von Neumann definition of ordinal numbers.

Let τ(x) be a first-order term.

Replacement: An axiom schema. For any collection a, ∀xa[τ(x) is a set] → {τ(x) : xa} is a set.

Remark: If the term τ(x) is a function (call it f(x)), and if the domain of f is a set, then the range of f is also a set.

Reflection: Let Φ denote a first-order formula in which any number of free variables are present. Let Φ(V) denote Φ with these free variables all quantified, with the quantified variables restricted to the level V.

Then ∃V[Φ→Φ(V)] is an axiom.

Remark: This schema asserts the existence of a "partial" universe, namely the level V, in which all properties Φ holding when the quantified variables range over all levels, also hold when these variables range over V only. Reflection turns Creation, Infinity, Ordinals, and Replacement into theorems (Potter 2004: §13.3).

Let A and a denote sequences of nonempty sets, each indexed by n.

Countable Choice: Given any sequence A, there exists a sequence a such that:

n∈ω[anAn].

Remark. Countable Choice enables proving that any set must be one of finite or infinite.

Let B and C denote sets, and let n index the members of B, each denoted Bn.

Choice: Let the members of B be disjoint nonempty sets. Then:

Cn[CBn is a singleton].

Discussion

The von Neumann universe implements the "iterative conception of set" by stratifying the universe of sets into a series of "levels," with the sets at a given level being the members of the sets making up the next higher level. Hence the levels form a nested and well-ordered sequence, and would form a hierarchy if set membership were transitive. The resulting iterative conception steers clear, in a well-motivated way, of the well-known paradoxes of Russell, Burali-Forti, and Cantor. These paradoxes all result from the unrestricted use of the principle of comprehension that naive set theory allows. Collections such as "the class of all sets" or "the class of all ordinals" include sets from all levels of the hierarchy. Given the iterative conception, such collections cannot form sets at any given level of the hierarchy and thus cannot be sets at all. The iterative conception has gradually become more accepted over time, despite an imperfect understanding of its historical origins.

Boolos's (1989) axiomatic treatment of the iterative conception is his set theory S, a two sorted first order theory involving sets and levels.

Scott's theory

Scott (1974) did not mention the "iterative conception of set," instead proposing his theory as a natural outgrowth of the simple theory of types. Nevertheless, Scott's theory can be seen as an axiomatization of the iterative conception and the associated iterative hierarchy.

Scott began with an axiom he declined to name: the atomic formula xy implies that y is a set. In symbols:

x,ya[xyy=a].

His axiom of Extensionality and axiom schema of Comprehension (Separation) are strictly analogous to their ZF counterparts and so do not mention levels. He then invoked two axioms that do mention levels:

  • Accumulation. A given level "accumulates" all members and subsets of all earlier levels. See the above definition of accumulation.
  • Restriction. All collections belong to some level.

Restriction also implies the existence of at least one level and assures that all sets are well-founded.

Scott's final axiom, the Reflection schema, is identical to the above existence premise bearing the same name, and likewise does duty for ZF's Infinity and Replacement. Scott's system has the same strength as ZF.

Potter's theory

Potter (1990, 2004) introduced the idiosyncratic terminology described earlier in this entry, and discarded or replaced all of Scott's axioms except Reflection; the result is ZU. ZU, like ZF, cannot be finitely axiomatized. ZU differs from ZFC in that it:

  • Includes no axiom of extensionality because the usual extensionality principle follows from the definition of collection and an easy lemma.
  • Admits nonwellfounded collections. However Potter (2004) never invokes such collections, and all sets (collections which are contained in a level) are wellfounded. No theorem in Potter would be overturned if an axiom stating that all collections are sets were added to ZU.
  • Includes no equivalents of Choice or the axiom schema of Replacement.

Hence ZU is closer to the Zermelo set theory of 1908, namely ZFC minus Choice, Replacement, and Foundation. It is stronger than this theory, however, since cardinals and ordinals can be defined, despite the absence of Choice, using Scott's trick and the existence of levels, and no such definition is possible in Zermelo set theory. Thus in ZU, an equivalence class of:

Similarly the natural numbers are not defined as a particular set within the iterative hierarchy, but as models of a "pure" Dedekind algebra. "Dedekind algebra" is Potter's name for a set closed under a unary injective operation, successor, whose domain contains a unique element, zero, absent from its range. Because the theory of Dedekind algebras is categorical (all models are isomorphic), any such algebra can proxy for the natural numbers.

Although Potter (2004) devotes an entire appendix to proper classes, the strength and merits of Scott–Potter set theory relative to the well-known rivals to ZFC that admit proper classes, namely NBG and Morse–Kelley set theory, have yet to be explored.

Scott–Potter set theory resembles NFU in that the latter is a recently (Jensen 1967) devised axiomatic set theory admitting both urelements and sets that are not well-founded. But the urelements of NFU, unlike those of ZU, play an essential role; they and the resulting restrictions on Extensionality make possible a proof of NFU's consistency relative to Peano arithmetic. But nothing is known about the strength of NFU relative to Creation+Separation, NFU+Infinity relative to ZU, and of NFU+Infinity+Countable Choice relative to ZU + Countable Choice.

Unlike nearly all writing on set theory in recent decades, Potter (2004) mentions mereological fusions. His collections are also synonymous with the "virtual sets" of Willard Quine and Richard Milton Martin: entities arising from the free use of the principle of comprehension that can never be admitted to the universe of discourse.

See also

References

  • George Boolos, 1971, "The iterative conception of set," Journal of Philosophy 68: 215–31. Reprinted in Boolos 1999. Logic, Logic, and Logic. Harvard Univ. Press: 13-29.
  • --------, 1989, "Iteration Again," Philosophical Topics 42: 5-21. Reprinted in Boolos 1999. Logic, Logic, and Logic. Harvard Univ. Press: 88-104.
  • Potter, Michael, 1990. Sets: An Introduction. Oxford Univ. Press.
  • ------, 2004. Set Theory and its Philosophy. Oxford Univ. Press.
  • Dana Scott, 1974, "Axiomatizing set theory" in Jech, Thomas, J., ed., Axiomatic Set Theory II, Proceedings of Symposia in Pure Mathematics 13. American Mathematical Society: 207–14.

Review of Potter(1990):

  • McGee, Vann, "[1]" "Journal of Symbolic Logic 1993":1077-1078

Reviews of Potter (2004):

  • Bays, Timothy, 2005, "Review," Notre Dame Philosophical Reviews.
  • Uzquiano, Gabriel, 2005, "Review," Philosophia Mathematica 13: 308-46.

Read other articles:

Bagian dari monumen pada Condottieri Giovanni dalle Bande Nere. Kekerasan seksual pada masa perang adalah pemerkosaan atau bentuk-bentuk kekerasan seksual yang dilakukan oleh pejuang selama konflik bersenjata atau perang atau pendudukan militer yang sering kali dianggap sebagai rampasan perang; tapi terkadang, terutamanya dalam konflik etnis, fenomena tersebut memiliki motif sosiologis yang lebih luas. kekerasan seksual pada masa perang juga mungkin termasuk pemerkosaan beramai-ramai dan peme...

 

 

African Union-United Nations Hybrid operation in Darfur DataNama singkatUNAMID Tipepeacekeeping mission (en) MenggantikanAfrican Union Mission in Sudan (en) Sejak31 Juli 2007Tanggal pembubaran31 Desember 2020 Situs webunamid.unmissions.org Sunting di Wikidata • L • B Operasi Gabungan PBB-Uni Afrika di Darfur (Inggris: African Union-United Nations Hybrid Operation in Darfurcode: en is deprecated ; UNAMID) adalah sebuah misi penjaga perdamaian yang diselenggarakan secara bersama-s...

 

 

Desa BajangDesaBukit brukoh bajang pakong pamekasanNegara IndonesiaProvinsiJawa TimurKabupatenPamekasanKecamatanPakongKode pos69352Kode Kemendagri35.28.09.2005 Luas156.595Jumlah penduduk1.764 jiwaKepadatan- Desa Bajang adalah desa yang terletak di Kecamatan Pakong Kabupaten Pamekasan. Di desa Bajang terdapat objek wisata yaitu Bukit Brukoh yang memiliki pemandangan alam yang masih indah dan asri. Luas wilayah dari Desa Bajang adalah 156.595 . Geografis Secara geografis desa Bajang terlet...

Al-MasfaLingkunganNegaraArab SaudiProvinsiProvinsi MakkahPemerintahan • Wali kotaHani Abu Ras[1] • Gubernur kotaMish'al Al-SaudKetinggian12 m (39 ft)Zona waktuUTC+3 (AST) • Musim panas (DST)ASTKode pos(5 kode digit dimulai dari 23; e.g. 23434)Kode area telepon+966-12Situs webwww.jeddah.gov.sa/english/index.php Al-Masfa adalah sebuah permukiman padat penduduk di kota Jeddah di Provinsi Makkah, tepatnya di sebelah barat Arab Saudi.[3]...

 

 

Corregimiento in Herrera, PanamaRincón HondoCorregimientoCountry PanamaProvinceHerreraDistrictPeséArea[1] • Land29 km2 (11 sq mi)Population (2010)[1] • Total1,416 • Density48.9/km2 (127/sq mi) Population density calculated based on land area.Time zoneUTC−5 (EST) Rincón Hondo is a corregimiento in Pesé District, Herrera Province, Panama with a population of 1,416 as of 2010.[1] Its population a...

 

 

Former UK government ministry For other uses, see Colonial Office (disambiguation). The Whitehall headquarters of the Foreign, India, Home, and Colonial Offices in 1866. It was at that time occupied by all four government departments; now it serves just the Foreign, Commonwealth and Development Office. The Colonial Office was a government department of the Kingdom of Great Britain and later of the United Kingdom, first created in 1768 from the Southern Department to deal with colonial affairs...

School in Houston, Texas, United States Douglas MacArthur High SchoolAddress4400 Aldine Mail Rt. Houston, TX 77093Coordinates29°54′05″N 95°19′44″W / 29.9015°N 95.3288°W / 29.9015; -95.3288InformationEstablished1965School districtAldine Independent School DistrictPrincipalShauna ShowersStaff170.92 (FTE)[2]Grades9-12Enrollment2,826 (2018-19)[1]Student to teacher ratio17.46[2]Color(s)Silver, Red and White      Team nameGe...

 

 

Most popular songs of the year in Australia 1997 Triple J Hottest 100Album artwork for the CD compilationCountdown detailsDate of countdown26 January 1998Countdown highlightsWinning songThe Whitlams(No Aphrodisiac)Most entriesThe Whitlams (2)The Verve (2)Radiohead (2)Jebediah (2)Silverchair (2)The Living End (2)Faith No More (2)Grinspoon (2)Ween (2)The Bloodhound Gang (2)Arkarna (2)Everclear (2)Chronology ← Previous1996 Next →1998 All Time The 1997 Triple J Hottest 100, was a co...

 

 

Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёры...

Artikel biografi ini ditulis menyerupai resume atau daftar riwayat hidup (Curriculum Vitae). Tolong bantu perbaiki agar netral dan ensiklopedis.Ramadhani Kirana Putra Wakil Wali Kota Solok ke-5PetahanaMulai menjabat 26 Februari 2021PresidenJoko WidodoGubernurMahyeldi AnsharullahWali KotaZul ElfianPendahuluIrzal IlyasPenggantiPetahana Informasi pribadiLahir8 Juli 1987 (umur 36)Solok, Sumatera BaratPartai politikNasDemAfiliasi politiklainnyaGolkar (2013–2020)Suami/istriNanda Dona...

 

 

Strada A360 LenaLocalizzazioneStato Russia DatiClassificazionestrada federale InizioJakutsk FineSkovorodino Lunghezza1235 km Percorso Manuale Strada statale A360 «Lena» La strada federale A360 «Lena» (in russo Федеральная автомобильная дорога А360 «Лена»?) è una strada federale nella Repubblica della Sacha-Jacuzia che collega la città di Jakutsk con il corridoio della ferrovia Transiberiana vicino a Skovorodino, nell'Oblast' dell'Amur (Circ...

 

 

Feeding behaviour Look up paedophagy in Wiktionary, the free dictionary. The orange chromide, (Pseudetroplus maculatus) will feed on eggs Paedophagy (literally meaning the consumption of children) in its general form is the feeding behaviour of fish or other animals whose diet is partially, or primarily the eggs or larvae of other animals. However, P. H. Greenwood, who was the first to describe paedophagia, defines it to be a feeding behaviour evolved among cichlid fishes.[1][2 ...

قوات الأمن الوطني الفلسطيني   الدولة دولة فلسطين  الإنشاء 1994  جزء من الأجهزة الأمنية الفلسطينية  المقر الرئيسي رام الله  مناطق العمليات الضفة الغربية الاشتباكات هبة النفق الانتفاضة الفلسطينية الثانية الموقع الرسمي الموقع الرسمي  القادة القائد الحالي اللو...

 

 

Volvode of Wallachia This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2009) (Learn how and when to remove this message) Radu MihneaPrince of Wallachia(1st reign)ReignNovember 1601 – March 1602PredecessorSimion MovilăSuccessorSimion MovilăPrince of Wallachia(2nd reign)ReignApril – May 1611PredecessorGabriel BáthorySuccessorRadu ȘerbanPrince of ...

 

 

History of conservatism in the United States This article is part of a series onConservatismin the United States Schools Compassionate Fiscal Fusion Libertarian Moderate Movement Neo Paleo Progressive Social Traditionalist Principles American exceptionalism Anti-communism Christian nationalism Classical liberalism Constitutionalism Familialism Family values Federalism States' rights Judeo-Christian values Individualism Law and order Limited government Militarism Moral absolutism Natural law P...

この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年5月)翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。 英語版記事を日本語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にし�...

 

 

青州府在山东省的位置(1820年) 青州府,明清时設置的府。 元朝时为益都路,属山东东西道宣慰司。至正二十七年(1367年),朱元璋政权改益都路为青州府。下领一州,十三县:益都县、临淄县、博兴县、高苑县、乐安县、寿光县、昌乐县、临朐县、安丘县、诸城县、蒙阴县、莒州(沂水县、日照县)[1]。 清代初期,領安東衞,州一,縣十三。雍正中,莒直隸,割�...

 

 

兄貴 Big Brother ポスター監督 アラン・ドワン製作 ジェシー・L・ラスキーアドルフ・ズコール出演者 トム・ムーアエディス・ロバーツレイモンド・ハットンジョー・キングミッキー・ベネットチャールズ・ヘンダーソンポール・パンサー製作会社 フェイマス・プレイヤーズ=ラスキー(英語版)配給 パラマウント映画公開 1923年12月23日 (1923-12-23) 上映時間 70分製作国...

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Roberts v. United States Jaycees – news · newspapers · books · scholar · JSTOR (November 2019) (Learn how and when to remove this message) 1984 United States Supreme Court caseRoberts v. United States JayceesSupreme Court of the United StatesArgued April 18, 1984Decided July 3, 1984Full case nameKathryn R...

 

 

Trönö sockenSocken Trönö gamla kyrkaLandSverigeLandskapHälsinglandKommunSöderhamns kommunBildadmedeltidenArea176 kvadratkilometerUpphov tillTrönö landskommunTrönö församlingMotsvararTrönö distriktTingslagSydöstra Hälsinglands domsagas tingslag (1948-01-01–)Ala tingslag (1907-01-01–1947-12-31)Norrala tingslag (–1906-12-31)Karta Trönö sockens läge i Gävleborgs län. Trönö sockens läge i Gävleborgs län.Koordinater61°23′03″N 16°52′51″Ö / 61...