Saturn C-3

Saturn C-3
Proposed Saturn C-3 and Apollo configuration (1962)
FunctionLEO and Lunar launch vehicle
ManufacturerBoeing (S-IB-2)
North American (S-II-C3)
Douglas (S-IV)
Country of originUnited States
Cost per launch43.5 million
Cost per year1985
Size
Height269.0 feet (82.0 m)
Diameter320 inches (8.1 m)
Mass2,256,806 pounds (1,023,670 kg)
Stages3
Capacity
Payload to LEO
Mass100,000 pounds (45,000 kg)
Payload to GTO
Mass50,000 pounds (23,000 kg)
Payload to TLI
Mass39,000 pounds (18,000 kg)[1]
Associated rockets
FamilySaturn
Derivative workSaturn INT-20, Saturn INT-21
Comparable
Launch history
StatusProposed (1961)
Launch sitesKennedy Space Center, SLC 37 (planned)
First stage – S-IB-2
Height113.10 feet (34.47 m)
Diameter320 inches (8.1 m)
Empty mass149,945 pounds (68,014 kg)
Gross mass1,599,433 pounds (725,491 kg)
Powered by2 Rocketdyne F-1
Maximum thrust3,000,000 pounds-force (13,000 kN)
Specific impulse265 sec (sea level)
Burn time139 seconds
PropellantRP-1/LOX
Second stage – S-II-C3
Height69.80 feet (21.28 m)
Diameter320 inches (8.1 m)
Empty mass54,978 pounds (24,938 kg)
Gross mass449,840 pounds (204,040 kg)
Powered by4 Rocketdyne J-2
Maximum thrust800,000 pounds-force (3,600 kN)
Specific impulse300 sec (sea level)
Burn time200 seconds
PropellantLH2 / LOX
Third stage – S-IV
Height61.6 feet (18.8 m)
Diameter220 inches (5.6 m)
Empty mass11,501 pounds (5,217 kg)
Gross mass111,500 pounds (50,600 kg)
Powered by6 Rocketdyne RL-10
Maximum thrust90,000 pounds-force (400 kN)
Specific impulse410 sec
Burn time482 seconds
PropellantLH2 / LOX

The Saturn C-3 was the third rocket in the Saturn C series studied from 1959 to 1962. The design was for a three-stage launch vehicle that could launch 45,000 kilograms (99,000 lb) to low Earth orbit and send 18,000 kilograms (40,000 lb) to the Moon via trans-lunar injection.[2][1]

U.S. President Kennedy's proposal on May 25, 1961, of an explicit crewed lunar landing goal spurred NASA to solidify its launch vehicle requirements for a lunar landing. A week earlier, William Fleming (Office of Space Flight Programs, NASA Headquarters) chaired an ad hoc committee to conduct a six-week study of the requirements for a lunar landing. Judging the direct ascent approach to be the most feasible, they concentrated their attention accordingly, and proposed circumlunar flights in late 1965 using the Saturn C-3 launch vehicle.[3]

In early June 1961, Bruce Lundin, deputy director of the Lewis Research Center, led a week-long study of six different rendezvous possibilities. The alternatives included Earth-orbital rendezvous (EOR), lunar-orbital rendezvous (LOR), Earth and lunar rendezvous, and rendezvous on the lunar surface, employing Saturn C-1s, C-3s, and Nova designs. Lundin's committee concluded that rendezvous enjoyed distinct advantages over direct ascent and recommended an Earth-orbital rendezvous using two or three Saturn C-3s.[3]

NASA announced on September 7, 1961, that the government-owned Michoud Ordnance Plant near New Orleans, Louisiana, would be the site for fabrication and assembly of the Saturn C-3 first stage as well as larger vehicles in the Saturn program. Finalists were two government-owned plants in St. Louis and New Orleans. The height of the factory roof at Michoud meant that a launch vehicle with eight F-1 engines (Nova class, Saturn C-8) could not be built; four or five engines (first stage) would have to be the maximum (Saturn C-5)

This decision ended consideration of a Nova class launch vehicle for a direct ascent to the Moon or as a heavy-lift companion with the Saturn C-3 for Earth orbit rendezvous.

Lunar mission design

Direct Ascent

During various Nova's proposal, a Modular Nova concept made up of clustering the first stage of C-3 were proposed.[4]

Earth orbit rendezvous

The Marshall Space Flight Center in Huntsville, Alabama developed an Earth orbit rendezvous proposal (EOR) for the Apollo program in 1960–1961. The proposal used a series of small rockets half the size of a Saturn V to launch different components of a spacecraft headed to the Moon. These components would be assembled in orbit around the Earth, then sent to the Moon via trans-lunar injection. In order to test and validate the feasibility of the EOR approach for the Apollo program, Project Gemini was founded with this objective: "To effect rendezvous and docking with another vehicle (Agena target vehicle), and to maneuver the combined spacecraft using the propulsion system of the target vehicle".

The Saturn C-3 would have been the primary launch vehicle for Earth orbit rendezvous. The booster consisted of a first stage containing two Saturn V F-1 engines, a second stage containing four powerful J-2 engines, and the S-IV stage from a Saturn I booster. Only the S-IV stage of the Saturn C-3 was developed and flown, but all of the specified engines were used on the Saturn V rocket which took men to the Moon.[5]

Lunar orbit rendezvous

The concept of Lunar orbit rendezvous (LOR) was studied at Langley Research Center as early as 1960. John Houbolt's memorandum advocating LOR for lunar missions in November 1961 to Robert Seamans outlined the usage of the Saturn C-3 launch vehicle, and avoiding complex large boosters and lunar landers.[6]

After six months of further discussion at NASA, in the summer of 1962, Langley Research Center's Lunar orbit rendezvous (LOR) proposal was officially selected as the mission configuration for the Apollo program on November 7, 1962.[7] By the end of 1962, the Saturn C-3 design was deemed not necessary for Apollo program requirements as larger boosters (Saturn C-4, Saturn C-5) were then proposed, hence further work on the Saturn C-3 was cancelled.[8]

Variants and derivatives

Saturn C-3B versions, with a nuclear upper stage derivative (1961)

Since 1961, a number of variants of the Saturn C-3 have been studied, proposed, and funded. The most extensive studies focused on the Saturn C-3B variants before the end of 1962, when lunar orbit rendezvous was selected and Saturn C-5 development approved. The common theme of these variants is the first stage with at least 3,044,000 lbf (13,540 kN) of sea-level thrust (SL). These designs used two or three Rocketdyne F-1 engines in a S-IB-2 or S-IC stage and diameters ranging from 8 to 10 meters (26 to 33 ft) that could lift up to 110,000 pounds (50,000 kg) to Low Earth Orbit (LEO).

The lack of a Saturn C-3 launch vehicle in 1965 created a large payload gap (LEO) between the Saturn IB's 21,000 kg (46,000 lb) capacity and the three-stage Saturn V's 75,000 kg (165,000 lb) capability. In the mid-1960s NASA's Marshall Space Flight Center (MSFC) initiated several studies for a launch vehicle to fill this payload capacity gap and to extend the capabilities of the Saturn family. Three companies provided proposals to MSFC for this requirement: Martin Marietta (builder of Atlas, Titan vehicles), Boeing (builder of S-1B and S-1C first stages), and North American (builder of the S-II second stage).

Saturn C-3B

The Saturn C-3B revision (1961) increased the total thrust of the three stages to 17,200 kN. The diameter of the first stage (S-IB-2) was increased to 33 feet (10 meters). The eventual first stage for the Saturn V (S-IC) would use this same diameter, but add 8 meters to its length. A further consideration added a third F-1 engine to the first stage. The S-II, second stage diameter would be 8.3 and 21.3 meters (27 and 70 feet) in length.

The 3-stage version would use the S-IV stage, with a diameter of 5.5 meters and 12.2 meters in length.

Saturn INT-20C, Boeing proposal (1966)

Saturn C-3BN

The Saturn C-3BN revision (1961) would use the NERVA for the third stage in this launch vehicle. The NERVA technology has been studied and proposed since mid-1950s for future space exploration.

Saturn INT-20

On 7 October 1966, Boeing submitted a Final Report to the NASA Marshall Space Flight Center, "Studies of Improved Saturn V Vehicles and Intermediate Payload Vehicles". That report outlined the Saturn INT-20, an intermediate two-stage launch vehicle with an S-1C first stage using three or four F-1 engines, and an S-IVB as the second stage with one J-2 engine. The vehicle's payload capacity for LEO would be 45,000 to 60,000 kg, comparable to the earlier Saturn C-3 design (1961). Boeing projected delivery and first flight in 1970, based on a decision by 1967.

Saturn II series, North American proposal (1966)

Saturn II

The Saturn II was a series of American expendable launch vehicles, studied by North American Aviation (NAA, later Rockwell) in 1966, under the NASA Marshall Space Flight Center (MSFC) and derived from components of the Saturn V rocket used for the Apollo program. The North American designs focused on eliminating the Boeing-built S-IC first stage and using North American's S-II second stage for the launch vehicle core. The intent of the study was to eliminate production of the Saturn IB, and create a lower-cost heavy launch vehicle based on current (1966) Saturn V hardware.

Post-Apollo development

The need for a launch vehicle of Saturn C-3 capacity (45 tonnes to LEO) continued beyond the Apollo program. Cape Canaveral Air Force Station Space Launch Complex 37, initially designed to serve the Saturn I and I-B, was planned for eventual Saturn C-3 usage, but it was deactivated in 1972. In 2001, Boeing refurbished the complex for its Delta IV EELV launch vehicle. The Delta IV Heavy variant can only launch 22.5 tonnes to LEO.

The 1986 Space Shuttle Challenger disaster and 2010 Space Launch System program resulted in renewed proposals for Saturn C-3 derivatives using the Rocketdyne F-1A engines with existing booster cores and tooling (10m - Saturn S-IC stage; 8.4m - Space Shuttle external tank; 5.1m - Delta IV Common Booster Core).

Jarvis

After the Space Shuttle Challenger disaster, the United States Air Force (USAF) and National Aeronautics and Space Administration (NASA) conducted a joint Advanced Launch System study (1987-1990). Hughes Aircraft and Boeing dusted off the earlier Saturn C-3 design and submitted their proposal for the Jarvis launch vehicle.[9]

The Jarvis would be a three-stage rocket, 58 m (190 ft) in height and 8.38 m (27.5 ft) in diameter. Designed to lift 38 tons to LEO, it would utilize F-1 and J-2 rocket engines and tooling in storage from the Saturn V rocket program along with more recent Shuttle-era technologies to provide lower launch costs.[10]

See also

References

Inline citations

  1. ^ a b Young, Anthony (2008). The Saturn V F-1 Engine: Powering Apollo into History. pp. 21–23. Bibcode:2008svfe.book.....Y.
  2. ^ "Saturn C-3". Astronautix.com. Archived from the original on May 2, 2002. Retrieved 8 June 2012.
  3. ^ a b Benson, Charles D.; William Barnaby Faherty (1978). "4-8". Moonport: A History of Apollo Launch Facilities and Operations. NASA (SP-4204). Retrieved 7 February 2013.
  4. ^ "Saturn Illustrated Chronology - Part 2". History.nasa.gov. Retrieved 2022-08-20.
  5. ^ Bilsten, Roger E. (1980). Stages to Saturn. NASA SP-4206. pp. 48–63.
  6. ^ Bilsten, Roger E. (1980). Stages to Saturn. NASA SP-4206. p. 63.
  7. ^ "The Rendezvous That Was Almost Missed: Lunar Orbit Rendezvous and the Apollo Program". NASA Langley Research Center. December 1992. Archived from the original on 6 April 2013. Retrieved 8 June 2012.
  8. ^ David M. Reeves; Michael D. Scher; Alan W. Wilhite; Douglas O. Stanley (2005). "The Apollo Lunar Orbit Rendezvous Architecture Decision Revisited" (PDF). National Institute of Aerospace, Georgia Tech. Archived from the original (PDF) on 27 October 2014. Retrieved 8 June 2012.
  9. ^ "Jarvis Medium Launch Vehicle". NASA Spaceflight Forums. 20 September 2013. Retrieved 23 March 2021.
  10. ^ "Jarvis launch vehicle". Astronautix.com. 1 July 1990. Archived from the original on December 27, 2016. Retrieved 8 June 2012.

Bibliography

  • Bilstein, Roger E, Stages to Saturn, US Government Printing Office, 1980. ISBN 0-16-048909-1. An excellent account of the evolution, design, and development of the Saturn launch vehicles.
  • Stuhlinger, Ernst, et al., Astronautical Engineering and Science: From Peenemuende to Planetary Space, McGraw-Hill, New York, 1964.
  • Jet Propulsion Lab; NASA Report - October 2, 1961; Some Interrelationships and Long-Range Implications of C-3 Lunar Rendezvous and solid Nova vehicle concepts. Accessed at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740072519_1974072519.pdf.
  • Robert P. Smith, Apollo Projects Office, NASA Report, Project Apollo - A description of a Saturn C-3 and Nova vehicle. July 25, 1961. Accessed at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790076768_1979076768.pdf.
  • NASA, "Earth Orbital Rendezvous for an Early Manned Lunar Landing," pt. I, "Summary Report of Ad Hoc Task Group Study" [Heaton Report], August 1961.
  • David S. Akens, Saturn Illustrated Chronology: Saturn's First Eleven Years, April 1957 through April 1968, 5th ed., MHR-5 (Huntsville, Alabama: MSFC, 20 Jan. 1971).
  • Boeing Study, Marshall Space Flight Center, '"Final Report - Studies of Improved Saturn V Vehicles and Intermediate Payload Vehicles'", October 7, 1966, Accessed at: http://www.astronautix.com/data/satvint.pdf

Public Domain This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.

Read other articles:

Sapfo dan Erinna di sebuah Taman di Mytilene karya Simeon Solomon Erinna (/ɪˈrɪnə/; Yunani: Ἤριννα) adalah seorang penyair Yunani kuno. Penjelasan biografi tentang kehidupannya masih tak jelas. Ia umumnya dianggap hidup pada paruh pertama abad keempat SM, meskipun beberapa tradisi kuno menyebutnya sebagai orang yang sezaman dengan Sapfo; Telos umumnya dianggap merupakan tempat kelahirannya, namun Tenos, Teos, Rhodes, dan Lesbos juga disebut oleh sumber-sumber kuno sebagai kampung h...

 

U.S. federal court FISC redirects here. For other uses, see Fisc (disambiguation). United States Foreign Intelligence Surveillance Court(F.I.S.C.)LocationE. Barrett Prettyman U.S. Courthouse(Washington, D.C.)Appeals toUnited States Foreign Intelligence Surveillance Court of ReviewEstablishedOctober 25, 1978AuthorityArticle III courtCreated byForeign Intelligence Surveillance Act50 U.S.C. §§ 1803–1805Composition methodChief Justice appointmentJudges11Judge term len...

 

2000 single by Eminem The Way I AmSingle by Eminemfrom the album The Marshall Mathers LP ReleasedAugust 26, 2000[1]Recorded2000GenreHardcore hip hopLength4:50LabelAftermathInterscopeWebSongwriter(s)Marshall MathersProducer(s)EminemEminem singles chronology The Real Slim Shady (2000) The Way I Am (2000) Stan (2000) Music videoThe Way I Am on YouTube The Way I Am is a song written, produced, and performed by American rapper Eminem from his third album The Marshall Mathers LP (2000). It ...

Motorsport track in India Buddh International CircuitConfiguration for FIM sanctioned eventsConfiguration for FIA sanctioned eventsLocationJaypee Sports City (near Greater Noida), Uttar Pradesh, IndiaTime zoneUTC+05:30 (Indian Standard Time)Coordinates28°21′2″N 77°32′6″E / 28.35056°N 77.53500°E / 28.35056; 77.53500Capacity110,000FIA Grade1[a]OwnerJaypee GroupOperatorJaypee Sports International LimitedOpened18 October 2011; 12 years ago&...

 

Township in Monmouth County, New Jersey, US Township in New JerseyManalapan Township, New JerseyTownshipRolling hills of Monmouth Battlefield and farmland SealMotto: A great place to live[1]Location of Manalapan Township in Monmouth County highlighted in yellow (right). Inset map: Location of Monmouth County in New Jersey highlighted in black (left).Census Bureau map of Manalapan Township, New Jersey Interactive map of Manalapan Township, New JerseyManalapan TownshipLocation in M...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article sur le jeu vidéo doit être recyclé (septembre 2016). Une réorganisation et une clarification du contenu paraissent nécessaires. Améliorez-le, discutez des points à améliorer ou précisez les sections à recycler en utilisant {{section à recycler}}. Nintendo GameCubeFabricant NintendoNom de code Project DolphinType Console de salonGénération SixièmeDate de sortie 14 septembre 2001 18 novemb...

国民阵线Barisan NasionalNational Frontباريسن ناسيونلபாரிசான் நேசனல்国民阵线标志简称国阵,BN主席阿末扎希总秘书赞比里署理主席莫哈末哈山总财政希山慕丁副主席魏家祥维纳斯瓦兰佐瑟古律创始人阿都拉萨成立1973年1月1日 (1973-01-01)[1]设立1974年7月1日 (1974-07-01)前身 联盟总部 马来西亚  吉隆坡 50480 秋傑区敦依斯迈路太子世贸中心(英�...

 

Isaac Nathan c. 1820 This is a list of Australian musical composers. Romantic Isaac Nathan (1790–1864)[1] Carl Ferdinand August Linger (1810–1862)[2] Charles Sandys Packer (1810–1883)[3] Francis Hartwell Henslowe (1811–1878)[4] William Vincent Wallace (1812–1865) Rosendo Salvado (1814–1900) William Stanley (1820–1902)[5] Charles Edward Horsley (1822–1876)[6] Frederick Ellard (1824–1874)[7] Siede, Julius (1825–1903)&#...

 

Philosophy of Immanuel Kant, a German philosopher This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (March 2008) (Learn how and when to remove this message) This article includes a list of general references, but it lacks suffic...

1941 song by Sister Rosetta Tharpe Up Above My Head, I Hear Music in the AirSingle by Sister Rosetta Tharpe and Marie KnightReleased1948RecordedNovember 24, 1947VenueNew York CityGenreGospel, R&BLength2:27LabelDeccaSongwriter(s)Sister Rosetta Tharpe Up Above My Head is a gospel song of traditional origin, first recorded in 1941 (as Above My Head I Hear Music In The Air) by The Southern Sons, a vocal group formed by William Langford of the Golden Gate Quartet.[1] In the version tha...

 

Indicator of economic importance of trade Trade openness in 2017[1] The trade-to-GDP ratio is an indicator of the relative importance of international trade in the economy of a country. It is calculated by dividing the aggregate value of imports and exports over a period by the gross domestic product for the same period. Although called a ratio, it is usually expressed as a percentage. It is used as a measure of the openness of a country to international trade and so may also be calle...

 

LeschesNegaraPrancisArondisemenTorcyKantonThorigny-sur-MarneAntarkomuneCommunauté d'agglomération de Marne et GondoirePemerintahan • Wali kota (2008-2014) Jean-Marie Jacquemin • Populasi1534Kode INSEE/pos77248 / 2 Population sans doubles comptes: penghitungan tunggal penduduk di komune lain (e.g. mahasiswa dan personil militer). Lambang Komune Lesches. Untuk kegunaan lain, lihat Lesche (disambiguasi). Lesches merupakan sebuah komune di departemen Seine-et-Marne ...

لقاح موديرنا   المرض المستهدف مرض فيروس كورونا اعتبارات علاجية طرق إعطاء الدواء حقن عضلي معرّفات ك ع ت J07BX03  درغ بنك DB15654  المكون الفريد EPK39PL4R4  بيانات كيميائية تعديل مصدري - تعديل   لقاح موديرنا (بالإنجليزية: Moderna vaccine)‏ ويرمز إليه باسم: mRNA-1273، هو لقاح ضد مرض فير...

 

Japanese football club Football clubIwaki FC いわきFCFull nameIwaki FCFounded2012; 12 years ago (2012)GroundHawaiians Stadium Iwaki Iwaki, FukushimaCapacity5,600ChairmanSatoshi OkuraManagerYuzo TamuraLeagueJ2 League2023J2 League, 18th of 22WebsiteClub website Home colours Away colours Current season Iwaki FC (いわきFC, Iwaki Efushi) is a football (soccer) club based in Iwaki, a city in Fukushima Prefecture, Japan. The club competes in the J2 League, the second tier of ...

 

Bendera Kerajaan Yugoslavia. Yugoslavisme (bahasa Serbo-Kroasia: Jugoslavizam), (bahasa Slovenia: Jugoslavizem) atau Keyugoslaviaan (bahasa Serbo-Kroasia: Jugoslovenstvo, bahasa Serbia: Југословенство), (bahasa Slovenia: Jugoslovanstvo) adalah istilah yang mengacu kepada nasionalisme atau patriotisme Slavia Selatan dan Yugoslavia. Pendukung gerakan yugoslavisme ingin agar semua wilayah Slavia Selatan disatukan dalam suatu negara. Wilayah-wilayah yang hendak d...

Resolusi 1169Dewan Keamanan PBBDataran Tinggi GolanTanggal27 Mei 1998Sidang no.3.885KodeS/RES/1169 (Dokumen)TopikSituasi di Timur TengahRingkasan hasil15 mendukungTidak ada menentangTidak ada abstainHasilDiadopsiKomposisi Dewan KeamananAnggota tetap Tiongkok Prancis Rusia Britania Raya Amerika SerikatAnggota tidak tetap Bahrain Brasil Kosta Rika Gabon Gambia Jepang Kenya Portugal Slovenia Swedia Resolusi 1169...

 

SalontaNagyszalontaGrosssalonthaKotaSalontaLetak SalontaNegara RumaniaProvinsiBihorStatusMunisipalitasPemerintahan • Wali kotaLászló TörökPopulasi (2002) • Total18.074Zona waktuUTC+2 (EET) • Musim panas (DST)UTC+3 (EEST)Situs webhttp://www.salonta.net/en/fooldal.htm Salonta (bahasa Hungaria: Nagyszalonta, bahasa Jerman: Grosssalontha) adalah kota dan munisipalitas yang terletak di dekat perbatasan Rumania-Hungaria. Kota ini secara admi...

 

 Vuelta a España 2021Edizione76ª Data14 agosto - 5 settembre PartenzaBurgos ArrivoSantiago di Compostela Percorso3 417 km, 21 tappe Tempo83h55'29 Media40,715 km/h Valida perUCI World Tour 2021 Classifica finalePrimo Primož Roglič Secondo Enric Mas Terzo Jack Haig Classifiche minoriPunti Fabio Jakobsen Montagna Michael Storer Giovani Gino Mäder Squadre Bahrain Victorious Cronologia Edizione precedenteEdizione successiva Vuelta a España 2020Vuelta a España 2...

County in Greater Poland Voivodeship, PolandŚrem County Powiat śremskiCounty FlagCoat of armsLocation within the voivodeshipCoordinates (Śrem): 52°5′N 17°1′E / 52.083°N 17.017°E / 52.083; 17.017Country PolandVoivodeshipGreater PolandSeatŚremGminas Total 4 Gmina BrodnicaGmina DolskGmina Książ WielkopolskiGmina Śrem Area • Total574.41 km2 (221.78 sq mi)Population (2006) • Total58,646 • Densit...

 

Legislative body of the Kingdom of Italy from 1861 until 1947 Senator of the Kingdom of Italy redirects here. For the office of Senator of the Republic, see Senate of the Republic (Italy). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Senate of the Kingdom of Italy – news · newspapers · books · scholar · J...