Sato–Tate conjecture

Sato–Tate conjecture
FieldArithmetic geometry
Conjectured byMikio Sato
John Tate
Conjectured inc. 1960
First proof byLaurent Clozel
Thomas Barnet-Lamb
David Geraghty
Michael Harris
Nicholas Shepherd-Barron
Richard Taylor
First proof in2011

In mathematics, the Sato–Tate conjecture is a statistical statement about the family of elliptic curves Ep obtained from an elliptic curve E over the rational numbers by reduction modulo almost all prime numbers p. Mikio Sato and John Tate independently posed the conjecture around 1960.

If Np denotes the number of points on the elliptic curve Ep defined over the finite field with p elements, the conjecture gives an answer to the distribution of the second-order term for Np. By Hasse's theorem on elliptic curves,

as , and the point of the conjecture is to predict how the O-term varies.

The original conjecture and its generalization to all totally real fields was proved by Laurent Clozel, Michael Harris, Nicholas Shepherd-Barron, and Richard Taylor under mild assumptions in 2008, and completed by Thomas Barnet-Lamb, David Geraghty, Harris, and Taylor in 2011. Several generalizations to other algebraic varieties and fields are open.

Statement

Let E be an elliptic curve defined over the rational numbers without complex multiplication. For a prime number p, define θp as the solution to the equation

Then, for every two real numbers and for which

Details

By Hasse's theorem on elliptic curves, the ratio

is between -1 and 1. Thus it can be expressed as cos θ for an angle θ; in geometric terms there are two eigenvalues accounting for the remainder and with the denominator as given they are complex conjugate and of absolute value 1. The Sato–Tate conjecture, when E doesn't have complex multiplication,[1] states that the probability measure of θ is proportional to

[2]

This is due to Mikio Sato and John Tate (independently, and around 1960, published somewhat later).[3]

Proof

In 2008, Clozel, Harris, Shepherd-Barron, and Taylor published a proof of the Sato–Tate conjecture for elliptic curves over totally real fields satisfying a certain condition: of having multiplicative reduction at some prime,[4] in a series of three joint papers.[5][6][7]

Further results are conditional on improved forms of the Arthur–Selberg trace formula. Harris has a conditional proof of a result for the product of two elliptic curves (not isogenous) following from such a hypothetical trace formula.[8] In 2011, Barnet-Lamb, Geraghty, Harris, and Taylor proved a generalized version of the Sato–Tate conjecture for an arbitrary non-CM holomorphic modular form of weight greater than or equal to two,[9] by improving the potential modularity results of previous papers.[10] The prior issues involved with the trace formula were solved by Michael Harris,[11] and Sug Woo Shin.[12][13]

In 2015, Richard Taylor was awarded the Breakthrough Prize in Mathematics "for numerous breakthrough results in (...) the Sato–Tate conjecture."[14]

Generalisations

There are generalisations, involving the distribution of Frobenius elements in Galois groups involved in the Galois representations on étale cohomology. In particular there is a conjectural theory for curves of genus n > 1.

Under the random matrix model developed by Nick Katz and Peter Sarnak,[15] there is a conjectural correspondence between (unitarized) characteristic polynomials of Frobenius elements and conjugacy classes in the compact Lie group USp(2n) = Sp(n). The Haar measure on USp(2n) then gives the conjectured distribution, and the classical case is USp(2) = SU(2).

Refinements

There are also more refined statements. The Lang–Trotter conjecture (1976) of Serge Lang and Hale Trotter states the asymptotic number of primes p with a given value of ap,[16] the trace of Frobenius that appears in the formula. For the typical case (no complex multiplication, trace ≠ 0) their formula states that the number of p up to X is asymptotically

with a specified constant c. Neal Koblitz (1988) provided detailed conjectures for the case of a prime number q of points on Ep, motivated by elliptic curve cryptography.[17] In 1999, Chantal David and Francesco Pappalardi proved an averaged version of the Lang–Trotter conjecture.[18][19]

See also

References

  1. ^ In the case of an elliptic curve with complex multiplication, the Hasse–Weil L-function is expressed in terms of a Hecke L-function (a result of Max Deuring). The known analytic results on these answer even more precise questions.
  2. ^ To normalise, put 2/π in front.
  3. ^ It is mentioned in J. Tate, Algebraic cycles and poles of zeta functions in the volume (O. F. G. Schilling, editor), Arithmetical Algebraic Geometry, pages 93–110 (1965).
  4. ^ That is, for some p where E has bad reduction (and at least for elliptic curves over the rational numbers there are some such p), the type in the singular fibre of the Néron model is multiplicative, rather than additive. In practice this is the typical case, so the condition can be thought of as mild. In more classical terms, the result applies where the j-invariant is not integral.
  5. ^ Taylor, Richard (2008). "Automorphy for some l-adic lifts of automorphic mod l Galois representations. II". Publ. Math. Inst. Hautes Études Sci. 108: 183–239. CiteSeerX 10.1.1.116.9791. doi:10.1007/s10240-008-0015-2. MR 2470688.
  6. ^ Clozel, Laurent; Harris, Michael; Taylor, Richard (2008). "Automorphy for some l-adic lifts of automorphic mod l Galois representations". Publ. Math. Inst. Hautes Études Sci. 108: 1–181. CiteSeerX 10.1.1.143.9755. doi:10.1007/s10240-008-0016-1. MR 2470687.
  7. ^ Harris, Michael; Shepherd-Barron, Nicholas; Taylor, Richard (2010), "A family of Calabi–Yau varieties and potential automorphy", Annals of Mathematics, 171 (2): 779–813, doi:10.4007/annals.2010.171.779, MR 2630056
  8. ^ See Carayol's Bourbaki seminar of 17 June 2007 for details.
  9. ^ Barnet-Lamb, Thomas; Geraghty, David; Harris, Michael; Taylor, Richard (2011). "A family of Calabi–Yau varieties and potential automorphy. II". Publ. Res. Inst. Math. Sci. 47 (1): 29–98. doi:10.2977/PRIMS/31. MR 2827723.
  10. ^ Theorem B of Barnet-Lamb et al. 2011
  11. ^ Harris, M. (2011). "An introduction to the stable trace formula". In Clozel, L.; Harris, M.; Labesse, J.-P.; Ngô, B. C. (eds.). The stable trace formula, Shimura varieties, and arithmetic applications. Vol. I: Stabilization of the trace formula. Boston: International Press. pp. 3–47. ISBN 978-1-57146-227-5.
  12. ^ Shin, Sug Woo (2011). "Galois representations arising from some compact Shimura varieties". Annals of Mathematics. 173 (3): 1645–1741. doi:10.4007/annals.2011.173.3.9.
  13. ^ See p. 71 and Corollary 8.9 of Barnet-Lamb et al. 2011
  14. ^ "Richard Taylor, Institute for Advanced Study: 2015 Breakthrough Prize in Mathematics".
  15. ^ Katz, Nicholas M. & Sarnak, Peter (1999), Random matrices, Frobenius Eigenvalues, and Monodromy, Providence, RI: American Mathematical Society, ISBN 978-0-8218-1017-0
  16. ^ Lang, Serge; Trotter, Hale F. (1976), Frobenius Distributions in GL2 extensions, Berlin: Springer-Verlag, ISBN 978-0-387-07550-1
  17. ^ Koblitz, Neal (1988), "Primality of the number of points on an elliptic curve over a finite field", Pacific Journal of Mathematics, 131 (1): 157–165, doi:10.2140/pjm.1988.131.157, MR 0917870.
  18. ^ "Concordia Mathematician Recognized for Research Excellence". Canadian Mathematical Society. 2013-04-15. Archived from the original on 2017-02-01. Retrieved 2018-01-15.
  19. ^ David, Chantal; Pappalardi, Francesco (1999-01-01). "Average Frobenius distributions of elliptic curves". International Mathematics Research Notices. 199 (4): 165–183.

Read other articles:

Eric UrbanUrban at the Mathematical Research Institute of Oberwolfach in 2018Alma materParis-Sud UniversityAwardsGuggenheim Fellowship (2007)Scientific careerFieldsMathematicsInstitutionsColumbia UniversityThesisArithmétique des formes automorphes pour GL(2) sur un corps imaginaire quadratique (1994)Doctoral advisorJacques Tilouine Eric Jean-Paul Urban is a professor of mathematics at Columbia University working in number theory and automorphic forms, particularly Iwasawa theory. C...

1ª Divisão 1946 Competizione 1ª Divisão Sport hockey su pista Edizione 8ª Organizzatore FPP Date dal 19 maggioal 6 ottobre 1946 Luogo  Portogallo Partecipanti 16 Risultati Vincitore  Paço de Arcos(4º titolo) Cronologia della competizione 1945 1947 Manuale La 1ª Divisão 1946 è stata l'8ª edizione del torneo di primo livello del campionato portoghese di hockey su pista. La competizione ha avuto inizio il 19 maggio e si è conclusa il 6 ottobre 1946. Il titolo è sta...

Ikan bersirip kipasRentang fosil: Silur Akhir - Sekarang PreЄ Є O S D C P T J K Pg N Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Superkelas: Osteichthyes Kelas: ActinopterygiiKlein, 1885 Subkelas Actinopteri Cladistia Actinopterygii (/ˌæktɪnɒptəˈrɪdʒiaɪ/; dari actino-, berarti memiliki kipas, dan bahasa Yunani Kuno πτέρυξ (ptérux), berarti sayap, sirip), yang anggotanya disebut sebagai ikan bersirip kipas, adalah klad (secara tradisi diklasifikasi...

  ميّز عن أسد الله بيات زنجاني. أسد الله الزنجاني (بالأذرية: Əsədulla Zəncani)‏  معلومات شخصية الميلاد 4 فبراير 1866  زنجان  الوفاة 7 أكتوبر 1935 (69 سنة)   النجف  مكان الدفن العتبة العلوية  مواطنة الدولة القاجارية الانتداب البريطاني على العراق المملكة العراقية  الح

الدوري الإماراتي للمحترفين 2010–11معلومات عامةالرياضة كرة القدم الاتحاد اتحاد الإمارات العربية المتحدة لكرة القدم البطولة دوري الخليج العربي الفئة كرة القدم للرجال النسخة 36 الفترة 2010-2011 فترة سنة واحدة البداية 26 أغسطس 2010 النهاية 9 يونيو 2011 البلد الإمارات العربية المتحدة عد�...

1999 film directed by Takao Okawara This article is about the 1999 film. For the unrelated novel, see Godzilla (Marc Cerasini series) § Godzilla 2000. Godzilla 2000: MillenniumTheatrical release posterJapanese nameKatakanaゴジラ2000TranscriptionsRevised HepburnGojira 2000 Directed byTakao OkawaraWritten byHiroshi KashiwabaraWataru MimuraProduced byShogo TomiyamaStarring Takehiro Murata Hiroshi Abe Naomi Nishida Mayu Suzuki Shiro Sano CinematographyKatsuhiro KatoEdited byYoshiyuki Oku...

Neighborhood of Buenos Aires in C4, ArgentinaBarracasNeighborhood of Buenos AiresChurch of Santa Felicitas Emblem[1]Location of Barracas within Buenos AiresCountryArgentinaAutonomous CityBuenos AiresComunaC4Area • Total7.6 km2 (2.9 sq mi)Population (2001) • Total77,474 • Density10,000/km2 (26,000/sq mi)Time zoneUTC-3 (ART)DayDecember 13Estación Buenos Aires Barracas is a barrio, or district, in the southeast part of the cit...

American epic space opera media franchise This article is about the media franchise. For the film, see Star Wars (film). For other uses, see Star Wars (disambiguation). Star WarsCreated byGeorge LucasOriginal workStar Wars (1977)[a]OwnerLucasfilm Ltd.Years1977; 46 years ago (1977)–presentPrint publicationsBook(s)List of reference booksNovel(s)List of novelsShort storiesSee list of novelsComicsList of comicsComic strip(s)See list of comicsFilms and televisionFilm(s)...

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Subterranean Records – news · newspapers · books · scholar · JSTOR (June 2010) (Learn how and when to remove this template message) Subterranean Records is an independent record label based in San Francisco. Founded by Steve Tupper and a then partner, Michael Fox in 1979,[1] it focused on that city...

This article is about the museum in Florida. For other institutions with similar names, see Norton Museum (disambiguation). Art museum in West Palm Beach, FloridaNorton Museum of ArtNorton Museum of Art in West Palm Beach, FloridaEstablished1941LocationWest Palm Beach, FloridaCoordinates26°42′03″N 80°03′11″W / 26.700782°N 80.053000°W / 26.700782; -80.053000TypeArt museumDirectorGhislain d'HumièresArchitectMarion Sims Wyeth and Lord Norman FosterWebsitenort...

Pour les articles homonymes, voir Paris-Saclay (homonymie). Paris-Saclay Nom original Campus du plateau de Saclay (sur cette image, l'école Polytechnique) Lieu Plateau de Saclay, Saint-Quentin-en-Yvelines, Versailles, Vélizy-Villacoublay, Massy et vallée de l'Yvette (Île-de-France) Pays France Superficie 77 km2[1] Construction À partir des années 50 et jusqu'en 2022[1] Établissements principaux CNRS, CEA, IHES, ONERA, Université Paris-Saclay, École polytechnique, Institut d'opti...

Estado miembro de la Unión Europea Mapa (seleccionable)Fecha de creación 1952/1958/1993Datos estadísticosNúmero actual 27 (2023)Tipos posibles Repúblicas (21)Monarquías (6)Poblaciones 446 824 564(2019)[1]​Áreas 4 233 255 km²Gobierno Democracia representativa parlamentario (23)Democracia representativa semipresidencial (3)Democracia representativa presidencial (1)[editar datos en Wikidata] Los Estados miembros de la Unión Europea[2]​ son los países sob...

16th-century movement in Western Christianity For other uses, see Reformation (disambiguation). Not to be confused with Reform movement. Part of a series on theReformationNinety-five Theses, written by Martin Luther in 1517 Precursors Peter Waldo and Waldensians John Wycliffe and Lollardy Jan Hus and Hussites Girolamo Savonarola and Piagnoni Arnold of Brescia and Arnoldists Gottschalk of Orbais Ratramnus Claudius of Turin Berengar of Tours and Berengarians Wessel Gansfort Johann Ruchrat von W...

Photograph by Peter Thomann The Soul of a Horse (1963) by Peter Thomann The Soul of a Horse (Mare With Foal) was an award-winning 1963 photo taken by the German photojournalist and Stern magazine staffer Peter Thomann.[1] In the mid-1970s the Kentucky Horse Park near Lexington opened to the public, using a logo based on the photograph.[2] The icon of the dark colored mare and a light colored foal in mid-run was used on the Kentucky 1988 base license plate. Thomann sued the sta...

Highland Scottish clan Clan MacThomasCrest: A demi-cat-a-mountain rampant guardant Proper, grasping in his dexter paw a serpent Vert, langued Gules, its tail environing the sinister pawMottoDeo juvante invidiam superabo (Latin: God help overcome envy)ProfileRegionHighlandDistrictPerthshireChiefAndrew Patrick MacThomas of Finegand,[1]The Chief of Clan MacThomas.[1] (MacThomaidh Mhor.[1]) Allied clans Chattan ConfederationClan MackintoshClan MacPhailClan MacBeanClan Shaw...

الشرير ينام جيدا悪い奴ほどよく眠る (باليابانية) ملصق الفلممعلومات عامةالصنف الفني فيلم دراما[1] — فيلم نوار[2] تاريخ الصدور 1960 مدة العرض 151 دقيقة اللغة الأصلية اليابانية العرض أبيض وأسود البلد اليابان موقع التصوير اليابان الطاقمالمخرج أكيرا كوروساوا[1] السيناريو أ...

This article is about a version of the Logo programming language. For the logo of Atari, see Atari § Logo. Atari LogoStartup screenDeveloper(s)LCSIInitial release1983; 40 years ago (1983)[1][2]PlatformAtari 8-bitAvailable inEnglishTypeLogo interpreterLicenseCopyright © 1983 LCSI, Proprietary[3] Atari Logo is ROM cartridge-based version of the Logo programming language for the Atari 8-bit family published by Atari, Inc. in 1983. It was developed...

2010 single by B.U.G. Mafia featuring BodoCât poți tu de tareSingle by B.U.G. Mafia featuring Bodofrom the album Înapoi În Viitor ReleasedDecember 31, 2010 [1]Recorded2010 Ines Sound & Video (Bucharest, Romania)GenreHip hopLength3:55LabelCasa ProductionsSongwriter(s)V.Irimia, A.Demeter, D.Vlad-NeaguProducer(s)TataeeB.U.G. Mafia singles chronology La Fel De Prost Ca Tine (2010) Cât poți tu de tare (2010) Fără Cuvinte (2011) Cât poți tu de tare (As hard as you can) is ...

2015 Indian filmWelcome ZindagiTitle Look Poster[1]Directed byUmesh GhadgeWritten byGanesh Matkari Srijit MukherjiScreenplay byGanesh MatkariStory bySrijit MukherjiBased onHemlock Society by Srijit MukherjiProduced byAjit Satam Sanjay Ahluwalia Bibhas ChhayaStarringSwapnil Joshi Amruta KhanvilkarCinematographyPrasad BhendeEdited byPranav MistryMusic byAmitraj Pankaj Padghan Soumil-SiddarthProductioncompanyRupali EntertainmentRelease date 26 June 2015 (2015-06-26) Runnin...

1994 Swedish general election ← 1991 18 September 1994 1998 → ← outgoing memberselected members →All 349 seats in the Riksdag175 seats needed for a majority   First party Second party Third party   Leader Ingvar Carlsson Carl Bildt Olof Johansson Party Social Democrats Moderate Centre Last election 138 80 31 Seats won 161 80 27 Seat change 23 0 4 Popular vote 2,513,905 1,243,253 425,153 Percentage 45.25% 22.38% 7.65% Sw...