Risk dominance

Risk dominance
Payoff dominance
Solution concept in game theory
Relationship
Subset ofNash equilibrium
Significance
Proposed byJohn Harsanyi, Reinhard Selten
Used forNon-cooperative games
ExampleStag hunt

Risk dominance and payoff dominance are two related refinements of the Nash equilibrium (NE) solution concept in game theory, defined by John Harsanyi and Reinhard Selten. A Nash equilibrium is considered payoff dominant if it is Pareto superior to all other Nash equilibria in the game.1 When faced with a choice among equilibria, all players would agree on the payoff dominant equilibrium since it offers to each player at least as much payoff as the other Nash equilibria. Conversely, a Nash equilibrium is considered risk dominant if it has the largest basin of attraction (i.e. is less risky). This implies that the more uncertainty players have about the actions of the other player(s), the more likely they will choose the strategy corresponding to it.

The payoff matrix in Figure 1 provides a simple two-player, two-strategy example of a game with two pure Nash equilibria. The strategy pair (Hunt, Hunt) is payoff dominant since payoffs are higher for both players compared to the other pure NE, (Gather, Gather). On the other hand, (Gather, Gather) risk dominates (Hunt, Hunt) since if uncertainty exists about the other player's action, gathering will provide a higher expected payoff. The game in Figure 1 is a well-known game-theoretic dilemma called stag hunt. The rationale behind it is that communal action (hunting) yields a higher return if all players combine their skills, but if it is unknown whether the other player helps in hunting, gathering might turn out to be the better individual strategy for food provision, since it does not depend on coordinating with the other player. In addition, gathering alone is preferred to gathering in competition with others. Like the Prisoner's dilemma, it provides a reason why collective action might fail in the absence of credible commitments.

Hunt Gather
Hunt 5, 5 0, 4
Gather 4, 0 2, 2
Fig. 1: Stag hunt example
H G
H A, a C, b
G B, c D, d
Fig. 2: Generic coordination game

Formal definition

The game given in Figure 2 is a coordination game if the following payoff inequalities hold for player 1 (rows): A > B, D > C, and for player 2 (columns): a > b, d > c. The strategy pairs (H, H) and (G, G) are then the only pure Nash equilibria. In addition there is a mixed Nash equilibrium where player 1 plays H with probability p = (d-c)/(a-b-c+d) and G with probability 1–p; player 2 plays H with probability q = (D-C)/(A-B-C+D) and G with probability 1–q.

Strategy pair (H, H) payoff dominates (G, G) if A ≥ D, a ≥ d, and at least one of the two is a strict inequality: A > D or a > d.

Strategy pair (G, G) risk dominates (H, H) if the product of the deviation losses is higher for (G, G) (Harsanyi and Selten, 1988, Lemma 5.4.4). In other words, if the following inequality holds: (C – D)(c – d)≥(B – A)(b – a). If the inequality is strict then (G, G) strictly risk dominates (H, H).2(That is, players have more incentive to deviate).

If the game is symmetric, so if A = a, B = b, etc., the inequality allows for a simple interpretation: We assume the players are unsure about which strategy the opponent will pick and assign probabilities for each strategy. If each player assigns probabilities ½ to H and G each, then (G, G) risk dominates (H, H) if the expected payoff from playing G exceeds the expected payoff from playing H: ½ B + ½ D ≥ ½ A + ½ C, or simply B + D ≥ A + C.

Another way to calculate the risk dominant equilibrium is to calculate the risk factor for all equilibria and to find the equilibrium with the smallest risk factor. To calculate the risk factor in our 2x2 game, consider the expected payoff to a player if they play H: (where p is the probability that the other player will play H), and compare it to the expected payoff if they play G: . The value of p which makes these two expected values equal is the risk factor for the equilibrium (H, H), with the risk factor for playing (G, G). You can also calculate the risk factor for playing (G, G) by doing the same calculation, but setting p as the probability the other player will play G. An interpretation for p is it is the smallest probability that the opponent must play that strategy such that the person's own payoff from copying the opponent's strategy is greater than if the other strategy was played.

Equilibrium selection

A number of evolutionary approaches have established that when played in a large population, players might fail to play the payoff dominant equilibrium strategy and instead end up in the payoff dominated, risk dominant equilibrium. Two separate evolutionary models both support the idea that the risk dominant equilibrium is more likely to occur. The first model, based on replicator dynamics, predicts that a population is more likely to adopt the risk dominant equilibrium than the payoff dominant equilibrium. The second model, based on best response strategy revision and mutation, predicts that the risk dominant state is the only stochastically stable equilibrium. Both models assume that multiple two-player games are played in a population of N players. The players are matched randomly with opponents, with each player having equal likelihoods of drawing any of the N−1 other players. The players start with a pure strategy, G or H, and play this strategy against their opponent. In replicator dynamics, the population game is repeated in sequential generations where subpopulations change based on the success of their chosen strategies. In best response, players update their strategies to improve expected payoffs in the subsequent generations. The recognition of Kandori, Mailath & Rob (1993) and Young (1993) was that if the rule to update one's strategy allows for mutation4, and the probability of mutation vanishes, i.e. asymptotically reaches zero over time, the likelihood that the risk dominant equilibrium is reached goes to one, even if it is payoff dominated.3

Notes

  • ^1 A single Nash equilibrium is trivially payoff and risk dominant if it is the only NE in the game.
  • ^2 Similar distinctions between strict and weak exist for most definitions here, but are not denoted explicitly unless necessary.
  • ^3 Harsanyi and Selten (1988) propose that the payoff dominant equilibrium is the rational choice in the stag hunt game, however Harsanyi (1995) retracted this conclusion to take risk dominance as the relevant selection criterion.

References

  • Samuel Bowles: Microeconomics: Behavior, Institutions, and Evolution, Princeton University Press, pp. 45–46 (2004) ISBN 0-691-09163-3
  • Drew Fudenberg and David K. Levine: The Theory of Learning in Games, MIT Press, p. 27 (1999) ISBN 0-262-06194-5
  • John C. Harsanyi: "A New Theory of Equilibrium Selection for Games with Complete Information", Games and Economic Behavior 8, pp. 91–122 (1995)
  • John C. Harsanyi and Reinhard Selten: A General Theory of Equilibrium Selection in Games, MIT Press (1988) ISBN 0-262-08173-3
  • Michihiro Kandori, George J. Mailath & Rafael Rob: "Learning, Mutation, and Long-run Equilibria in Games", Econometrica 61, pp. 29–56 (1993) Abstract
  • Roger B. Myerson: Game Theory, Analysis of Conflict, Harvard University Press, pp. 118–119 (1991) ISBN 0-674-34115-5
  • Larry Samuelson: Evolutionary Games and Equilibrium Selection, MIT Press (1997) ISBN 0-262-19382-5
  • H. Peyton Young: "The Evolution of Conventions", Econometrica, 61, pp. 57–84 (1993) Abstract
  • H. Peyton Young: Individual Strategy and Social Structure, Princeton University Press (1998) ISBN 0-691-08687-7

Read other articles:

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 24 de octubre de 2018. Voleibol en los Juegos Olímpicos Datos generalesDeporte voleibolClasificados para competir 12 (masculino y femenino)Federación Federación Internacional de VoleibolOrganizador COIGrupos 2Datos históricosFundación 1964Primera temporada 1964Primer campeón Masculino:  Unión Soviética Femenino  JapónDatos estadísticosCampeón actual Masculi...

J.A.K.Q. DengekitaiGenreTokusatsuPembuatShotaro IshinomoriPemeranYoshitaka TambaShichiro Gou (Diperankan sebagai Heizan Ito)Mitchi LoveYusuke KazatoHiroshi MiyauchiNaratorToru OhiraPenggubah lagu temaMichiaki WatanabeLagu pembukaJAKQ Dengekitai oleh Isao Sasaki dan Koorogi '73Lagu penutupItsuka, Hana wa Saku darou oleh Isao SasakiPenata musikMichiaki WatanabeNegara asal JepangJmlh. episode35ProduksiProduserTakafumi HaginoYoshiaki KoizumiSusumu YoshikawaDurasi30 menit per episodeRumah pr...

اضغط هنا للاطلاع على كيفية قراءة التصنيف مواء أخضر حالة الحفظ أنواع غير مهددة أو خطر انقراض ضعيف جدا (IUCN 3.1)[1] المرتبة التصنيفية نوع[2][3]  التصنيف العلمي المملكة: حيوانات الشعبة: حبليات الطائفة: طيور الرتبة: عصفوريات الفصيلة: طيور التعريشة الاسم العلمي Ailuroedus...

Para otros usos de este término, véase Antonio Aguilar (desambiguación). Antonio Aguilar Aguilar en The Undefeated (1969).Información personalNombre de nacimiento José Pascual Antonio Aguilar Barraza[1]​Apodo El Charro de MéxicoNacimiento 17 de mayo de 1919Villanueva, Zacatecas, MéxicoFallecimiento 19 de junio de 2007 (88 años)Ciudad de México, MéxicoCausa de muerte NeumoníaSepultura Rancho de Antonio Aguilar, El SoyateNacionalidad MexicanaFamiliaPadres Jesús Aguilar Ag...

Mexican footballer (born 1979) Melvin Brown Brown with Cruz AzulPersonal informationFull name Melvin Brown CasadosDate of birth (1979-01-28) 28 January 1979 (age 44)Place of birth Naranjos, Veracruz, MexicoHeight 1.75 m (5 ft 9 in)[1]Position(s) Centre-backSenior career*Years Team Apps (Gls)1998–2004 Cruz Azul 101 (5)2004–2008 Chiapas 125 (5)2008 → Puebla (loan) 16 (1)2008–2012 Tecos 17 (1)2009–2010 → Cruz Azul (loan) 23 (4)2010–2011 → Puebla (loan)...

國立臺灣大學電機資訊學院类型學院建立日期1997年隶属國立臺灣大學下属電機工程學系資訊工程學系光電工程學研究所電信工程學研究所電子工程學研究所資訊網路與多媒體研究所生醫電子與資訊學研究所資訊電子研究中心物聯網研究中心奈米機電系統研究中心綠色電能研究中心院长張耀文副院长吳宗霖林恭如逄愛君教师数227人(2019年1月)学生数3585人(2019年1月)本科生1353

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) روجر جاكسون (بالإنجليزية: Roger Charles Jackson)‏    معلومات شخصية الميلاد 14 يناير 1942 (81 سنة)  تورونتو  مواطنة كندا  الطول 199 سنتيمتر[1]  الوزن 86 كيلوغرا

  هذه المقالة عن المجلس الإسلامي البريطاني. لمعانٍ أخرى، طالع مجلس إسلامي (توضيح).   المجلس الإسلامي البريطاني المجلس الإسلامي البريطاني‌ البلد المملكة المتحدة  تاريخ التأسيس 1997  الرئيس زارا محمد  الأمين العام زارا محمد (–)  الموقع الرسمي الموقع الرسمي 

NGC 1260 المستعر الأعظم 2006 جي واي مراقبة البيانات (J2000 حقبة) جزء من عنقود برشيوس المجري  الكوكبة حامل رأس الغول رمز الفهرس NGC 1260 (الفهرس العام الجديد)IRAS 03141+4113 (IRAS)PGC 12219 (فهرس المجرات الرئيسية)[1]UGC 2634 (فهرس أوبسالا العام)2MASX J03172720+4124184 (Two Micron All Sky Survey, Extended source catalogue)MCG+07-07-047 (فهرس ا

Mi nyemekSepiring mi nyemekJenisRebusanSajianHidangan utamaTempat asalIndonesiaDaerahYogyakartaDibuat olehOrang JawaSuhu penyajianPanasBahan utamaMi, telur, daging ayamVariasiPedas dan tidak pedas Mi nyemek (Jawa: ꦩꦶꦚꦼꦩꦼꦏ꧀) adalah masakan bakmi khas Yogyakarta yang disajikan dengan kuah yang kental dan sedikit.[1] Istilah nyemek sendiri berasal dari bahasa Jawa yang berarti tidak basah dan tidak kering. Mungkin tengah-tengahnya antara bakmi kuah dan bakmi goreng. S...

Mapa de Königsberg en la época de Leonhard Euler, que muestra dónde se encontraban los siete puentes (en verde claro) y las ramas del río (en celeste). El problema de los puentes de Königsberg, también llamado más específicamente problema de los siete puentes de Königsberg, es un célebre problema matemático resuelto por Leonhard Euler en 1736 y cuya resolución dio origen a la teoría de grafos.[1]​ Su nombre se debe a Königsberg, la ciudad de Prusia Oriental y luego de Alem...

Untuk kegunaan lain, lihat Saone (disambiguasi). Saône (La Saône) Sona Sungai Saône di Lyon pada malam hari Negara France Anak sungai  - kiri Doubs, Lanterne  - kanan Azergues, Morgon Sumber Vioménil  - location Vosges  - elevation 392 m (1.286 ft) Muara Rhône  - lokasi Lyon, France  - elevation 158 m (518 ft) Panjang 473 km (294 mi) Area 29.950 km2 (11.564 sq mi) Debit air  -...

Village development committee in Janakpur Zone, NepalKholagaun खोलागाउँVillage development committeeKholagaunLocation in NepalCoordinates: 27°11′0″N 86°15′30″E / 27.18333°N 86.25833°E / 27.18333; 86.25833Country   NepalZoneJanakpur ZoneDistrictSindhuli DistrictPopulation (1991) • Total2,774Time zoneUTC+5:45 (Nepal Time) Kholagaun is a village development committee in Sindhuli District in the Janakpur Zone of s...

The Morning of Sedgemoor, por Edgar Bundy A Rebelião de Monmouth, também conhecida como a Rebelião Pitchfork, a Revolta do Oeste ou a rebelião de West Country, foi uma tentativa de derrubar Jaime II. Ele se tornou rei da Inglaterra, Escócia e Irlanda após a morte de seu irmão mais velho, Carlos II da Inglaterra, em 6 de fevereiro de 1685. Jaime II era católico romano e alguns protestantes sob seu governo se opuseram ao seu reinado. Jaime Scott, 1.º Duque de Monmouth, o filho ilegíti...

Mercado de Antón Martín, fachada calle Santa Isabel El mercado de Antón Martín (de nombre oficial Mercado Municipal de Antón Martín) es un mercado de abastos ubicado en el centro de Madrid.[1]​ Entre las calle de Atocha (junto a la parroquia de San Salvador y San Nicolás) y la Santa Isabel (junto al cine Doré). Cercano a la Plaza de Antón Martín. El mercado ofrece diversos productos de temporada Historia El amplio espacio abierto en la calle Atocha frente al Hospital de Antón...

Former proposed theme park For the theme park owned by The Oriental Land Company in Japan, see Tokyo DisneySea. DisneySeaLocationPort Disney, Long Beach, California, U.S.A.Coordinates33°44′48″N 118°11′06″W / 33.74667°N 118.18500°W / 33.74667; -118.18500StatusCancelledOwnerWalt Disney Parks and ResortsThemeNautical DisneySeaclass=notpageimage| DisneySea was proposed for new fill on Queensway Bay at the mouth of the Los Angeles River. Disney Sea was an aquati...

Japanese manga series Sakura DiariesCover of the first manga volume桜通信(Sakura Tsuushin)GenreRomantic comedy[1]Sex comedy[2] MangaWritten byU-JinPublished byShogakukanMagazineWeekly Young SundayDemographicSeinenOriginal run1995 – 2000Volumes20 Original video animationDirected byKunitoshi OkajimaProduced byHideaki Kaneko (Victor Entertainment)Shōji Muronaga (Kitty Film)Tooru TagaHiroshi Wakao (Shaft)Written byKenji TeradaMusic byMitsuo Hagi...

US three-dollar coin (1854–1889) Three-dollar piece ($3)United StatesValue3 United States dollarsMass5.015 gDiameter20.5 mm (.807 in)EdgereededComposition90% gold, 10% copperGold.1451 troy ozYears of minting1854 (1854)–1889 (1889)Mint marksD, O, S. Found immediately below the wreath on the reverse. Philadelphia Mint pieces lack mint mark.Obverse DesignLiberty as a Native American princessDesignerJames B. LongacreDesign date1854Design discontinued1889Reve...

יאנוש מוניאקJanusz Józef Muniak לידה 3 ביוני 1941קרקוב, גנרלגוברנמן פטירה 31 בינואר 2016 (בגיל 74)קרקוב, רפובליקת פולין מקום קבורה בית הקברות ראקוביצקי מוקד פעילות פולין סוגה ג'אז שפה מועדפת פולנית כלי נגינה סקסופון פרסים והוקרה Honoris Gratia אביר במסדר פולוניה רסטיטוטה יאנוש מוניאק בקרקוב, 200...

Mei Foo美孚Stasiun angkutan cepat MTRNama TionghoaTionghoa 美孚 Yale KantonMéih fū Arti harfiahGracious ConfidenceTranskripsiTionghoa StandarHanyu PinyinMěifúYue: KantonRomanisasi YaleMéih fūJyutpingMei5 fu1 Informasi umumLokasiTWL: Mount Sterling, Mei Foo Sun Chuen, Lai Chi KokWRL: Lai Chi Kok Park, Lai Chi KokDistrik Sham Shui Po, Hong KongKoordinat22°20′17″N 114°08′15″E / 22.3381°N 114.1376°E / 22.3381; 114.1376PemilikKowloon–Canton Railway C...