Reynolds equation

In fluid mechanics (specifically lubrication theory), the Reynolds equation is a partial differential equation governing the pressure distribution of thin viscous fluid films. It was first derived by Osborne Reynolds in 1886.[1] The classical Reynolds Equation can be used to describe the pressure distribution in nearly any type of fluid film bearing; a bearing type in which the bounding bodies are fully separated by a thin layer of liquid or gas.

General usage

The general Reynolds equation is:

Where:

  • is fluid film pressure.
  • and are the bearing width and length coordinates.
  • is fluid film thickness coordinate.
  • is fluid film thickness.
  • is fluid viscosity.
  • is fluid density.
  • are the bounding body velocities in respectively.
  • are subscripts denoting the top and bottom bounding bodies respectively.

The equation can either be used with consistent units or nondimensionalized.

The Reynolds Equation assumes:

  • The fluid is Newtonian.
  • Fluid viscous forces dominate over fluid inertia forces. This is the principle of the Reynolds number.
  • Fluid body forces are negligible.
  • The variation of pressure across the fluid film is negligibly small (i.e. )
  • The fluid film thickness is much less than the width and length and thus curvature effects are negligible. (i.e. and ).

For some simple bearing geometries and boundary conditions, the Reynolds equation can be solved analytically. Often however, the equation must be solved numerically. Frequently this involves discretizing the geometric domain, and then applying a finite technique - often FDM, FVM, or FEM.

Derivation from Navier-Stokes

A full derivation of the Reynolds Equation from the Navier-Stokes equation can be found in numerous lubrication text books.[2][3]

Solution of Reynolds Equation

In general, Reynolds equation has to be solved using numerical methods such as finite difference, or finite element. In certain simplified cases, however, analytical or approximate solutions can be obtained.[4]

For the case of rigid sphere on flat geometry, steady-state case and half-Sommerfeld cavitation boundary condition, the 2-D Reynolds equation can be solved analytically. This solution was proposed by a Nobel Prize winner Pyotr Kapitsa. Half-Sommerfeld boundary condition was shown to be inaccurate and this solution has to be used with care.

In case of 1-D Reynolds equation several analytical or semi-analytical solutions are available. In 1916 Martin obtained a closed form solution[5] for a minimum film thickness and pressure for a rigid cylinder and plane geometry. This solution is not accurate for the cases when the elastic deformation of the surfaces contributes considerably to the film thickness. In 1949, Grubin obtained an approximate solution[6] for so called elasto-hydrodynamic lubrication (EHL) line contact problem, where he combined both elastic deformation and lubricant hydrodynamic flow. In this solution it was assumed that the pressure profile follows Hertz solution. The model is therefore accurate at high loads, when the hydrodynamic pressure tends to be close to the Hertz contact pressure.[7]

Applications

The Reynolds equation is used to model the pressure in many applications. For example:

Reynolds Equation adaptations - Average Flow Model

In 1978 Patir and Cheng introduced an average flow model,[8][9] which modifies the Reynolds equation to consider the effects of surface roughness on lubricated contacts. The average flow model spans the regimes of lubrication where the surfaces are close together and/or touching. The average flow model applied "flow factors" to adjust how easy it is for the lubricant to flow in the direction of sliding or perpendicular to it. They also presented terms for adjusting the contact shear calculation. In these regimes, the surface topography acts to direct the lubricant flow, which has been demonstrated to affect the lubricant pressure and thus the surface separation and contact friction.[10]

Several notable attempts have been made to taken additional details of the contact into account in the simulation of fluid films in contacts. Leighton et al.[10] presented a method for determining the flow factors needed for the average flow model from any measured surface. Harp and Salent[11] extended the average flow model by considering the inter-asperity cavitation. Chengwei and Linqing[12] used an analysis of the surface height probability distribution to remove one of the more complex terms from the average Reynolds equation, and replace it with a flow factor referred to as contact flow factor, . Knoll et al. calculated flow factors, taking into account the elastic deformation of the surfaces. Meng et al.[13] also considered the elastic deformation of the contacting surfaces.

The work of Patir and Cheng was a precursor to the investigations of surface texturing in lubricated contacts. Demonstrating how large scale surface features generated micro-hydrodynamic lift to separate films and reduce friction, but only when the contact conditions support this.[14]

The average flow model of Patir and Cheng,[8][9] is often coupled with the rough surface interaction model of Greenwood and Tripp[15] for modelling of the interaction of rough surfaces in loaded contacts.[10][16]

References

  1. ^ Reynolds, O. (1886). "On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil". Philosophical Transactions of the Royal Society of London. 177. Royal Society: 157–234. doi:10.1098/rstl.1886.0005. JSTOR 109480. S2CID 110829869.
  2. ^ Hamrock, Bernard J.; Schmid, Steven R.; Jacobson, Bo O. (2004). Fundamentals of Fluid Film Lubrication. Taylor & Francis. ISBN 978-0-8247-5371-9.
  3. ^ Szeri, Andras Z. (2010). Fluid Film Lubrication. Cambridge University Press. ISBN 978-0-521-89823-2.
  4. ^ "Reynolds Equation: Derivation and Solution". tribonet.org. 12 November 2016. Retrieved 10 September 2019.
  5. ^ Akchurin, Aydar (18 February 2016). "Analytical Solution of 1D Reynolds Equation". tribonet.org. Retrieved 10 September 2019.
  6. ^ Akchurin, Aydar (22 February 2016). "Semi-Analytical Solution of 1D Transient Reynolds Equation(Grubin's Approximation)". tribonet.org. Retrieved 10 September 2019.
  7. ^ Akchurin, Aydar (4 January 2017). "Hertz Contact Calculator". tribonet.org. Retrieved 10 September 2019.
  8. ^ a b Patir, Nadir; Cheng, H. S. (1978). "An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication". Journal of Lubrication Technology. 100 (1): 12. doi:10.1115/1.3453103. ISSN 0022-2305.
  9. ^ a b Patir, Nadir; Cheng, H. S. (1979-04-01). "Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces". Journal of Lubrication Technology. 101 (2): 220–229. doi:10.1115/1.3453329. ISSN 0022-2305.
  10. ^ a b c Leighton; et al. (2016). "Surface-specific flow factors for prediction of friction of cross-hatched surfaces". Surface Topography: Metrology and Properties. 4 (2): 025002. doi:10.1088/2051-672x/4/2/025002. S2CID 111631084.
  11. ^ Harp, Susan R.; Salant, Richard F. (2000-10-17). "An Average Flow Model of Rough Surface Lubrication With Inter-Asperity Cavitation". Journal of Tribology. 123 (1): 134–143. doi:10.1115/1.1332397. ISSN 0742-4787.
  12. ^ Wu, Chengwei; Zheng, Linqing (1989-01-01). "An Average Reynolds Equation for Partial Film Lubrication With a Contact Factor". Journal of Tribology. 111 (1): 188–191. doi:10.1115/1.3261872. ISSN 0742-4787.
  13. ^ Meng, F-M; Wang, W-Z; Hu, Y-Z; Wang, H (2007-07-01). "Numerical analysis of combined influences of inter-asperity cavitation and elastic deformation on flow factors". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 221 (7): 815–827. doi:10.1243/0954406jmes525. ISSN 0954-4062. S2CID 137022386.
  14. ^ Morris, N; Leighton, M; De la Cruz, M; Rahmani, R; Rahnejat, H; Howell-Smith, S (2014-11-17). "Combined numerical and experimental investigation of the micro-hydrodynamics of chevron-based textured patterns influencing conjunctional friction of sliding contacts". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 229 (4): 316–335. doi:10.1177/1350650114559996. ISSN 1350-6501. S2CID 53586245.
  15. ^ Greenwood, J. A.; Tripp, J. H. (June 1970). "The Contact of Two Nominally Flat Rough Surfaces". Proceedings of the Institution of Mechanical Engineers. 185 (1): 625–633. doi:10.1243/pime_proc_1970_185_069_02. ISSN 0020-3483.
  16. ^ Leighton, M; Nicholls, T; De la Cruz, M; Rahmani, R; Rahnejat, H (2016-12-12). "Combined lubricant–surface system perspective: Multi-scale numerical–experimental investigation". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 231 (7): 910–924. doi:10.1177/1350650116683784. ISSN 1350-6501. S2CID 55438508.

Read other articles:

Singaporean venture capitalist In this Chinese name, the family name is Lee. Jenny LeeLee at TechCrunch Disrupt in 2017Born1972 (age 51–52)SingaporeNationalitySingaporeanAlma materCornell University Kellogg School of Management OccupationVenture capitalistEmployerGGV CapitalSpouseVincent Koh Jenny Lee (born 1972) is a Singaporean venture capitalist and managing partner of GGV Capital based in Shanghai. Lee was the first woman venture capitalist to break into the top 10 of Forb...

 

Hayam WurukSri RajasanagaraSri WilwatikaMaharaja Majapahit ke 4Berkuasa Majapahit (1350–1389)Penobatan1350PendahuluTribhuwana WijayatunggadewiPenerusWikramawardhana dan KusumawardhaniInformasi pribadiKelahiranDyah Hayam Wuruk1334 MajapahitKematian1389 MajapahitPemakamanCandi Ngetos, Nganjuk, Jawa TimurWangsaRajasaAyahCakradhara (Kertawardhana Bhre Tumapel)IbuDyah Gitarja (Tribhuwana Wijayatunggadewi)PermaisuriSri Sudewi (Paduka Sori)IstriSri Sudewi (Paduka Sori)Ibu Bhre Wirabhumi (seli...

 

Le Barbier de Springfield Saison 19 Épisode no 2 Titre original The Homer of Seville Titre québécois D'ohpéra de quatre sous Code de production JABF18 1re diffusion aux É.-U. 30 septembre 2007 1re diffusion en France 2 septembre 2008 1re diffusion au Québec 12 septembre 2008 Tableau noir « Le Wall Street Journal est mieux que jamais. » Gag du canapé On assiste à l'évolution de l’espèce humaine au travers d'Homer. Au départ, Homer, sous le stade de cellule, se d�...

Peta perpindahan orang-orang Székely. Székely Bukovina adalah kelompok etnis Hungaria yang pernah menetap di wilayah Bukovina. Mereka pindah ke wilayah tersebut dari Transilvania pada pertengahan akhir abad ke-18. Di situ mereka mendirikan desa-desa baru dan mempertahankan budaya Székely mereka hingga abad ke-20. Perpindahan ini terjadi akibat pendirian Zona Perbatasan Székely Kekaisaran Habsburg yang membahayakan beberapa hak khusus kelompok Székely. Pendudukan Bukovina utara oleh Austr...

 

Election in Arkansas Main article: 1988 United States presidential election 1988 United States presidential election in Arkansas ← 1984 November 8, 1988 1992 →   Nominee George H. W. Bush Michael Dukakis Party Republican Democratic Home state Texas Massachusetts Running mate Dan Quayle Lloyd Bentsen Electoral vote 6 0 Popular vote 466,578 349,237 Percentage 56.37% 42.19% County Results Bush   40-50%   50-60%   60-70%...

 

Vue satellite de nuit de l'Europe en 2002. Le secteur de l'électricité en Europe se caractérise par la part importante des énergies dé-carbonées dans la production d'électricité : elles ont couvert 62,9 % de la consommation brute d'électricité de l'Union européenne en 2020. Les énergies renouvelables ont assuré 37,5 % de la production électrique de l'Union européenne (contre 15,9 % en 2004) et couvert 38,6 % de la consommation et le nucléaire 24,4 ...

Jalur perakitan Volkswagen di Wolfsburg, 1973 Industri otomotif di Jerman adalah salah satu industri yang paling banyak menyerap tenaga kerja di negara itu, dengan total jumlah pekerja adalah sekitar 866.000 orang (2005). Selain itu, Jerman juga adalah negara produsen mobil terbesar di Eropa, sekitar 29% dari total produksi Eropa berasal dari Jerman (sumber: OICA, 2002), baru diikuti oleh Prancis (18%), Spanyol (13%) dan Britania Raya (9%).[1] Pada tahun 2009, Kanselir Jerman Angela M...

 

Košice-okolie District in the Kosice Region Vajkovce (Hungarian: Tarcavajkóc) is a village and municipality in Košice-okolie District in the Kosice Region of eastern Slovakia. History In historical records, the village was first mentioned in 1630. Geography The village lies at an altitude of 200 metres and covers an area of 3.888 km2. It has a population of 540 people. External links [1] vteMunicipalities of Košice–okolie District Medzev Moldava nad Bodvou Bačkovík Baška Belža ...

 

Congregation of Saint Michael the ArchangelCongregatio Sancti Michaelis ArchangeliAbbreviationCSMANicknameMichaelites[1]Formation1921; 103 years ago (1921)FounderBlessed Fr. Bronisław Bonawentura Markiewicz, SDBTypeClerical Religious Congregation of Pontifical Right for menHeadquartersUl. Marszalka Józefa Pilsudskiego 248/252, 05-261 Marki-Struga, PolandCoordinates41°54′4.9″N 12°27′38.2″E / 41.901361°N 12.460611°E / 41.901361; 12...

Perguruan dan hall di Universitas Oxford Somerville College     Nama perguruan Somerville College Nama Latin Collegium de Somerville Motto Donec rursus impleat orbem (translated: Until it should fill the world again) Dinamakan menurut Mary Somerville Didirikan 1879 Perguruan tinggi saudari Girton College, Cambridge Principal Janet Royall, Baroness Royall of Blaisdon Sarjana 413[1] (2017/2018) Lulusan 191 Lokasi Woodstock Road, Oxford Blazon Argent, three mullets in chevron ...

 

Town in Delaware, United StatesMagnolia, DelawareTownMagnolia Fire Company, with Town Hall and water tower in backgroundLocation of Magnolia in Kent County, Delaware.MagnoliaLocation within the state of DelawareShow map of DelawareMagnoliaMagnolia (the United States)Show map of the United StatesCoordinates: 39°04′16″N 75°28′34″W / 39.07111°N 75.47611°W / 39.07111; -75.47611Country United StatesState DelawareCounty KentArea[1] •...

 

Lambang Bulgaria Lambang Bulgaria (Bulgaria: Герб на България [ˈɡɛrp nɐ bɐɫˈɡarijɐ]) terdiri dari perisai merah bergambar singa emas berdiri; dengan mahkota Kerajaan Bulgaria di atasnya. Perisai ditopang oleh dua singa emas dengan mahkota; di bawah perisai terdapat ranting daun ek dengan pita putih bertuliskan semboyan Persatuan Ciptakan Kekuatan. Deskripsi Lambang Bulgaria saat ini diadopsi pada tahun 1997. Lambang saat ini adalah versi lambang Bulgaria yang sedikit di...

国民阵线Barisan NasionalNational Frontباريسن ناسيونلபாரிசான் நேசனல்国民阵线标志简称国阵,BN主席阿末扎希总秘书赞比里署理主席莫哈末哈山总财政希山慕丁副主席魏家祥维纳斯瓦兰佐瑟古律创始人阿都拉萨成立1973年1月1日 (1973-01-01)[1]设立1974年7月1日 (1974-07-01)前身 联盟总部 马来西亚  吉隆坡 50480 秋傑区敦依斯迈路太子世贸中心(英�...

 

Peta lokasi Sominot Sominot adalah munisipalitas yang terletak di provinsi Zamboanga del Sur, Filipina. Sominot terbagi menjadi 18 barangay. Bag-ong Baroy Bag-ong Oroquieta Barubuhan Bulanay Datagan Eastern Poblacion Lantawan Libertad Lumangoy New Carmen Picturan Poblacion Rizal San Miguel Santo Niño Sawa Tungawan Upper Sicpao Pranala luar Philippine Standard Geographic Code Diarsipkan 2012-04-13 di Wayback Machine. 2000 Philippine Census Information lbs Provinsi Zamboanga SelatanMunisipalit...

 

Двугранный угол и линейный угол двугранного угла Двугранный угол трёх векторов (как внешний сферический угол) Двугранный угол — пространственная геометрическая фигура, образованная двумя полуплоскостями, исходящими из одной прямой, а также часть пространства, огра�...

Spanish theologian Martín de AzpilcuetaMartín de AzpilcuetaBorn13 December 1491Barásoain, Kingdom of Navarre, Crown of CastilleDied1 June 1586Rome, Papal StatesEraRenaissance philosophyRegionWestern philosophy Spanish philosophy SchoolThomismSchool of SalamancaMain interests Canon law Economics Ethics Theology Notable ideasQuantity theory of money Martín de Azpilcueta (Azpilkueta in Basque)[1] (13 December 1492 – 1 June 1586), or Doctor Navarrus, was an important Spanish can...

 

Paper sack of flour. 5 pound, 2.27 kg 40 kg. multi-wall paper sacks of flour open multi-wall paper sack of flour A flour sack or flour bag is a bag or sack for flour. Large bulk bags as well as smaller consumer sizes are available. Description A flour sack or flour bag is a bag or sack for flour. Sacks range in size and material. Package types Bulk packaging Flour is often shipped from the miller to bakeries, institutions, and other bulk uses. Sizes range from 10 kg to 100 kg. One t...

 

Hilltop RoadGeneral informationLocationGarrett Road & Hilltop RoadUpper Darby Township, PennsylvaniaCoordinates39°57′21″N 75°16′22″W / 39.9559°N 75.2729°W / 39.9559; -75.2729Owned bySEPTAPlatforms2 side platformsTracks2ConstructionStructure typeOpen sheltersHistoryElectrifiedOverhead linesServices Preceding station SEPTA Following station Beverly Boulevardtoward Orange Street Route 101 Avon Roadtoward 69th Street T.C. Beverly Boulevardtoward Sharon Hill...

American political party (1916–2021) National Woman's PartySuccessorAlice Paul InstituteFormationJune 5, 1916; 108 years ago (1916-06-05)DissolvedJanuary 1, 2021PurposeTo secure an amendment to the United States Constitution enfranchising women and to pass the ERAHeadquartersWashington, D.C., U.S.Key peopleAlice Paul, Lucy Burns, Mabel Vernon, Anne Henrietta MartinWebsitehttps://www.alicepaul.org/Formerly calledCongressional Union for Woman Suffrage The National Woman's Pa...

 

Polish rower Konrad WasielewskiKonrad Wasielewski (left), 2008Personal informationBorn19 December 1984 Medal record Men's rowing Representing  Poland Olympic Games 2008 Beijing Quadruple sculls World Rowing Championships 2005 Gifu Quadruple sculls 2006 Eton Quadruple sculls 2007 Munich Quadruple sculls 2009 Poznan Quadruple sculls European Championships 2010 Montemor-o-Velho Quadruple sculls 2013 Sevilla Quadruple sculls Konrad Henryk Wasielewski (born 19 December 1984 in Szczecin) is a ...