Resolvent formalism

In mathematics, the resolvent formalism is a technique for applying concepts from complex analysis to the study of the spectrum of operators on Banach spaces and more general spaces. Formal justification for the manipulations can be found in the framework of holomorphic functional calculus.

The resolvent captures the spectral properties of an operator in the analytic structure of the functional. Given an operator A, the resolvent may be defined as

Among other uses, the resolvent may be used to solve the inhomogeneous Fredholm integral equations; a commonly used approach is a series solution, the Liouville–Neumann series.

The resolvent of A can be used to directly obtain information about the spectral decomposition of A. For example, suppose λ is an isolated eigenvalue in the spectrum of A. That is, suppose there exists a simple closed curve in the complex plane that separates λ from the rest of the spectrum of A. Then the residue

defines a projection operator onto the λ eigenspace of A. The Hille–Yosida theorem relates the resolvent through a Laplace transform to an integral over the one-parameter group of transformations generated by A.[1] Thus, for example, if A is a skew-Hermitian matrix, then U(t) = exp(tA) is a one-parameter group of unitary operators. Whenever , the resolvent of A at z can be expressed as the Laplace transform

where the integral is taken along the ray .[2]

History

The first major use of the resolvent operator as a series in A (cf. Liouville–Neumann series) was by Ivar Fredholm, in a landmark 1903 paper in Acta Mathematica that helped establish modern operator theory.

The name resolvent was given by David Hilbert.

Resolvent identity

For all z, w in ρ(A), the resolvent set of an operator A, we have that the first resolvent identity (also called Hilbert's identity) holds:[3]

(Note that Dunford and Schwartz, cited, define the resolvent as (zI −A)−1, instead, so that the formula above differs in sign from theirs.)

The second resolvent identity is a generalization of the first resolvent identity, above, useful for comparing the resolvents of two distinct operators. Given operators A and B, both defined on the same linear space, and z in ρ(A) ∩ ρ(B) the following identity holds,[4]

A one-line proof goes as follows:

Compact resolvent

When studying a closed unbounded operator A: HH on a Hilbert space H, if there exists such that is a compact operator, we say that A has compact resolvent. The spectrum of such A is a discrete subset of . If furthermore A is self-adjoint, then and there exists an orthonormal basis of eigenvectors of A with eigenvalues respectively. Also, has no finite accumulation point.[5]

See also

References

  1. ^ Taylor, section 9 of Appendix A.
  2. ^ Hille and Phillips, Theorem 11.4.1, p. 341
  3. ^ Dunford and Schwartz, Vol I, Lemma 6, p. 568.
  4. ^ Hille and Phillips, Theorem 4.8.2, p. 126
  5. ^ Taylor, p. 515.
  • Dunford, Nelson; Schwartz, Jacob T. (1988), Linear Operators, Part I General Theory, Hoboken, NJ: Wiley-Interscience, ISBN 0-471-60848-3
  • Fredholm, Erik I. (1903), "Sur une classe d'equations fonctionnelles" (PDF), Acta Mathematica, 27: 365–390, doi:10.1007/bf02421317
  • Hille, Einar; Phillips, Ralph S. (1957), Functional Analysis and Semi-groups, Providence: American Mathematical Society, ISBN 978-0-8218-1031-6.
  • Kato, Tosio (1980), Perturbation Theory for Linear Operators (2nd ed.), New York, NY: Springer-Verlag, ISBN 0-387-07558-5.
  • Taylor, Michael E. (1996), Partial Differential Equations I, New York, NY: Springer-Verlag, ISBN 7-5062-4252-4

Read other articles:

Village in Ulcinj, MontenegroGornji Štoj Горњи ШтојShtoji i EpërmVillageGornji ŠtojLocation within MontenegroCoordinates: 41°53′17″N 19°21′05″E / 41.8881°N 19.3514°E / 41.8881; 19.3514Country MontenegroMunicipality UlcinjPopulation (2011) • Total107Time zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST) Gornji Štoj (Cyrillic: Горњи Штој; Albanian: Shtoji i Epërm) is a village in the municipality of Ulcinj, Mo...

この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2022年12月) ほとんどまたは完全に一つの出典に頼っています。(2022年12月)出典検索?: 今泉嘉一郎 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Johann BerthelsenLahirJohann Henrik Carl Berthelsen(1883-07-25)25 Juli 1883Copenhagen, DenmarkMeninggalApril 3, 1972 (usia 88)Greenwich, CTKebangsaanAmerika SerikatPendidikanSvend SvendsenDikenal atasLukisanGerakan politikImpresionisme Johann Henrik C...

Finnish politician Pihla Keto-HuovinenKeto-Huovinen in May 2023.Member of the Finnish Parliamentfor UusimaaIncumbentAssumed office 17 April 2019 Personal detailsBorn19 September 1974Espoo, Uusimaa, FinlandPolitical partyNational Coalition PartyAlma materUniversity of Helsinki Pihla Keto-Huovinen (born 19 September 1974 in Espoo) is a Finnish politician currently serving in the Parliament of Finland for the National Coalition Party at the Uusimaa constituency.[1] References ^ Edusk...

Skadron Udara 14Lanud IswahyudiLambang Skadud 14Dibentuk1 Juli 1962Negara IndonesiaCabang TNI Angkatan UdaraTipe unitSatuan Tempur Buru SergapBagian dariWing Udara 3MarkasLanud Iswahyudi, MagetanJulukanSkadud 14Moto“Akasha Parakrama”Ulang tahun1 JuliSitus webwww.lanud-iswahjudi.mil.id Skadron Udara 14 Tempur disingkat (Skadud 14) adalah Satuan Tempur Buru Sergap dibawah kendali Wing Udara 3 Tempur, Lanud Iswahyudi yang bermarkas di Maospati, Kabupaten Magetan, Jawa Timur. Pesawat F-5 Tige...

Map of Zimbabwe This is a list of cities, towns and villages in Zimbabwe. See also: Place names in Zimbabwe. Cities This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (September 2017) (Learn how and when to remove this template message) Harare Bulawayo Mutare Kwekwe Kadoma Cities in Zimbabwe[1] City Province Census 1982 Census 1992 Census 2002 Census 2012 Census 2022 Harare...

Tentara Pembebasan KoreaBendera Pemerintahan Sementara Republik KoreaAktif1940–1946AliansiPemerintahan Sementara Republik KoreaCabangInfanteriTipe unitInfanteriPeranPeperangan gerilya, Operasi khususJumlah personel339Bagian dari National Revolutionary Army( Kuomintang) (~1944)Moto대한독립만세code: ko is deprecated  (Korea)Long live the Korean IndependenceHimneLe Chant des PartisansTokohPresidenBaekbeomKim KooKomandanJi Cheong-cheonTokoh berjasaLee Bum-suk,Kim Won-bongKim Hak-gyuP...

Christian feast, public holiday in some countries This article is about the Christian feast day. For other uses, see Epiphany. EpiphanyThe Adoration of the Magi by Edward Burne-Jones (1904)Also calledBaptism of Jesus, Three Kings Day, Denha, Little Christmas, Theophany, Timkat, ReyesObserved byChristiansTypeChurch service, winter swimming, chalking the door, house blessings, star singingSignificance In Eastern Christianity: commemoration of the Baptism of Jesus only In Western Christiani...

Dragons of FaithCodeDL12Rules requiredAD&D (1st Edition)Character levels9 - 10Campaign settingDragonlanceAuthorsHarold JohnsonBruce HeardFirst published1986Linked modulesDL10 DL12 DL13 DL14 Dragons of Faith is the second of four parts in the third major story arc of the Dungeons & Dragons Dragonlance series of game modules. It is one of the 14 Dragonlance adventures published by TSR between 1984 and 1986. Its cover features a painting by Jeff Easley. Plot synopsis Dragons of Faith is ...

Friedrich Ancillon, Büste von Ludwig Wilhelm Wichmann Jean Pierre Frédéric Ancillon Grab-Medaillon, Französischer Friedhof (Berlin) Jean Pierre Frédéric Ancillon (genannt Friedrich oder Johann Peter Friedrich, * 30. April 1767 in Berlin; † 19. April 1837 ebenda) war ein preußischer Staatsmann, Philosoph und Erzieher des späteren Königs Friedrich Wilhelm IV. von Preußen. Inhaltsverzeichnis 1 Leben 2 Philosophie 3 Rezeption 4 Werke 5 Literatur 6 Weblinks 7 Einzelnachweise Leben Anci...

Drs. H. Suhardiman Amby, Ak, M.M (lahir 16 Juli 1969) adalah seorang Politikus asal Riau yang saat ini menjabat sebagai Bupati Kuantan Singingi definitif sejak tanggal 14 Juli 2023[1] dan sebelumnya ia menjabat sebagai Pelaksana Tugas (Plt) Bupati sejak tanggal 20 Oktober 2021.[2] Sebelumnya, ia menjabat sebagai Wakil Bupati Kuantan Singingi[3] dan pernah duduk sebagai Anggota DPRD Riau 2 periode 2004-2009 dan 2014-2019. Suhardiman AmbyBupati Kuantan SingingiMasa jabat...

Goddess of fertility and childbirth in Hawaiian mythology HaumeaGoddess of fertility and childbirthGenderFemaleRegionHawaiiEthnic groupHawaiiansConsortMulinaha, KanaloaOffspringPele, Kāne Milohai, Kāmohoaliʻi, Nāmaka, Kapo, Hiʻiaka, Laumiha, Kahaʻula, Kahakauakoko, and Kauakahi Haumea (Hawaiian: [həuˈmɛjə]) is the goddess of fertility and childbirth in Hawaiian mythology. She is the mother of many important deities, such as Pele, Kāne Milohai, Kāmohoaliʻi, Nāmaka, Kapo, ...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Raven Rise – news · newspapers · books · scholar · JSTOR (February 2008) (Learn how and when to remove this template message) Raven Rise Book coverAuthorD.J. MacHaleCover artistDawn AustinCountryUnited StatesLanguageEnglishSeriesPendragonGenreFantasy novel...

The Bramah challenge lock The Bramah lock was created by Joseph Bramah in 1784. The lock employed the first known high-security design. History After attending some lectures on technical aspects of locks, Bramah designed a lock of his own, receiving a patent for it in 1784. In the same year he started the Bramah Locks company at 124 Piccadilly, London.[1] The locks produced by his company were famed for their resistance to lock picking and tampering, and the company famously had a cha...

Naxi pictographic writing system DongbaScript type Pictographic Time periodAt least 30 C.E. to the presentDirectionLeft-to-rightLanguagesNaxi languageISO 15924ISO 15924Nkdb (085), ​Naxi Dongba (na²¹ɕi³³ to³³ba²¹, Nakhi Tomba) The Dongba, Tomba or Tompa or Mo-so symbols are a system of pictographic glyphs used by the ²dto¹mba (Bon priests) of the Naxi people in southern China. In the Naxi language it is called ²ss ³dgyu 'wood records' or ²lv ³dgyu 'stone records'. ...

American labor union for theater performers This article is about the American labor union. For the British equivalent, see Equity (trade union). For the Canadian equivalent, see Canadian Actors' Equity Association. For the former Australian equivalent, see Actors Equity of Australia. Actors' Equity AssociationAbbreviationAEAActors' EquityEquityFormationMay 26, 1913; 110 years ago (1913-05-26)TypeTrade unionHeadquartersNew York City, New York, U.S.LocationUnited StatesMember...

Resultados do Carnaval do Rio de Janeiro em 1990 Baianas da Mocidade no desfile de 1990. Escola conquistou seu terceiro título no carnaval. Escolas campeãs Grupo Especial Mocidade Independente de Padre Miguel Grupo 1 Unidos do Viradouro Grupo 2 Leão de Nova Iguaçu Grupo 3 Acadêmicos da Rocinha Avaliação Vizinha Faladeira Blocos campeões Empolgação A1 Alegria da Capelinha Empolgação A2 Magnatas de Engenheiro Empolgação A3 Queima de Bangu Enredo Grupo 1 Flor da Mina do Andaraí E...

RehaviaLingkunganNegara IsraelProvinsiYerusalemKotaYerusalemZona waktuUTC+3 (EAT) • Musim panas (DST)UTC+3 (EAT) Rehavia adalah sebuah lingkungan di kota suci Yerusalem di Provinsi Yerusalem, tepatnya di sebelah timur Israel.[1] Referensi ^ National Geospatial-Intelligence Agency. GeoNames database entry. (search Diarsipkan 2017-03-18 di Wayback Machine.) Accessed 12 May 2011. lbsLingkungan di YerusalemLingkungan-lingkungan Yerusalem sebelah timur garis gencatan senja...

Geological Survey of IndiaKantor Pusat. 27 JN Road, Kolkata.Informasi lembagaDibentuk1851Wilayah hukumIndia Britania (1851-1947) Republik India (dari tahun 1947)Kantor pusatKolkataPejabat eksekutifDr Dinesh Gupta, DG , GSISitus webhttps://www.gsi.gov.in/ Geological Survey of India atau Badan Survei Geologi India (GSI), yang didirikan pada tahun 1851, adalah sebuah organisasi Kementerian Pertambangan Pemerintah India, salah satu yang tertua dari organisasi serupa di dunia dan lembaga survei te...

Vista hacia el norte del Grand Coulee. La conocida como roca del barco a vapor en el Grand Coulee. Una parte del Grand Coulee ha sido utilizada para construir una presa que se ha llenado con agua como parte del Proyecto de la cuenca del Columbia. Grand Coulee, debajo de las Dry Falls. Se observa el efecto en capas de los flujos periódicos de lava basáltica. El Grand Coulee (del original en francés grand coulée, que significa la «gran colada [de lava]») es un antiguo cauce fluvial que se...