Random self-reducibility

Random self-reducibility (RSR) is the rule that a good algorithm for the average case implies a good algorithm for the worst case. RSR is the ability to solve all instances of a problem by solving a large fraction of the instances.

Definition

If for a function f evaluating any instance x can be reduced in polynomial time to the evaluation of f on one or more random instances yi, then it is self-reducible (this is also known as a non-adaptive uniform self-reduction). In a random self-reduction, an arbitrary worst-case instance x in the domain of f is mapped to a random set of instances y1, ..., yk. This is done so that f(x) can be computed in polynomial time, given the coin-toss sequence from the mapping, x, and f(y1), ..., f(yk). Therefore, taking the average with respect to the induced distribution on yi, the average-case complexity of f is the same (within polynomial factors) as the worst-case randomized complexity of f.

One special case of note is when each random instance yi is distributed uniformly over the entire set of elements in the domain of f that have a length of |x|. In this case f is as hard on average as it is in the worst case. This approach contains two key restrictions. First the generation of y1, ..., yk is performed non-adaptively. This means that y2 is picked before f(y1) is known. Second, it is not necessary that the points y1, ..., yk be uniformly distributed.

Application in cryptographic protocols

Problems that require some privacy in the data (typically cryptographic problems) can use randomization to ensure that privacy. In fact, the only provably secure cryptographic system (the one-time pad) has its security relying totally on the randomness of the key data supplied to the system.

The field of cryptography utilizes the fact that certain number-theoretic functions are randomly self-reducible. This includes probabilistic encryption and cryptographically strong pseudorandom number generation. Also, instance-hiding schemes (where a weak private device uses a strong public device without revealing its data) are easily exemplified by random self-reductions.

Examples

The discrete logarithm problem, the quadratic residuosity problem, the RSA inversion problem, and the problem of computing the permanent of a matrix are each random self-reducible problems.

Discrete logarithm

Theorem: Given a cyclic group G of size |G|. If a deterministic polynomial time algorithm A computes the discrete logarithm for a 1/poly(n) fraction of all inputs (where n = log |G| is the input size), then there is a randomized polynomial time algorithm for discrete logarithm for all inputs.

Given a generator g of a cyclic group G = { gi | 0 ≤ i < |G| }, and an xG, the discrete log of x to the base g is the integer k (0 ≤ k < |G|) with x = gk. Take B to be distributed uniformly on {0,...,|G| − 1}, then xgB = gk+B is also distributed uniformly on G. Therefore xgB is independent of x, and its logarithm can be computed with probability 1/poly(n) in polynomial time. Then loggx ≡ loggxgB - B (mod |G|) and the discrete logarithm is self-reducible.

Permanent of a matrix

Given the definition of the permanent of a matrix, it is clear that PERM(M) for any n-by-n matrix M is a multivariate polynomial of degree n over the entries in M. Calculating the permanent of a matrix is a difficult computational task—PERM has been shown to be #P-complete (proof). Moreover, the ability to compute PERM(M) for most matrices implies the existence of a random program that computes PERM(M) for all matrices. This demonstrates that PERM is random self-reducible. The discussion below considers the case where the matrix entries are drawn from a finite field Fp for some prime p, and where all arithmetic is performed in that field.

Let X be a random n-by-n matrix with entries from Fp. Since all the entries of any matrix M + kX are linear functions of k, by composing those linear functions with the degree n multivariate polynomial that calculates PERM(M) we get another degree n polynomial on k, which we will call p(k). Clearly, p(0) is equal to the permanent of M.

Suppose we know a program that computes the correct value of PERM(A) for most n-by-n matrices with entries from Fp---specifically, 1 − 1/(3n) of them. Then with probability of approximately two-thirds, we can calculate PERM(M + kX) for k = 1,2,...,n + 1. Once we have those n + 1 values, we can solve for the coefficients of p(k) using interpolation (remember that p(k) has degree n). Once we know p(k) exactly, we evaluate p(0), which is equal to PERM(M).

If we do so, we run the risk of being wrong 1/3 of the time, but by picking multiple random Xs and repeating the above procedure many times, and only providing the majority winner as an answer, we can drive the error rate down very low.

Consequences

References

Read other articles:

Brazilian TV series or program O Rico e LázaroGenreTelenovelaCreated byPaula RichardWritten by Cristianne Fridman Camilo Pellegrini Joaquim Assis Starring Milena Toscano Dudu Azevedo Igor Rickli Christine Fernandes Adriana Garambone Heitor Martinez Denise Del Vecchio Lucinha Lins Paulo Figueiredo Cássio Scapin Gabriel Gracindo Opening themeRicopen by Daniel FigueiredoCountry of originBrazilOriginal languagePortugueseNo. of episodes181ProductionProduction locationsRio de Janeiro, BrazilCame...

 

Kereta kuda Kereta kuda merupakan kendaraan beroda yang terdiri atas 1 kotak besar, setengah bundar maupun jenis lain yang ditarik oleh kuda, ditopang oleh pegas di dalamnya terdapat 2 bangku yang dapat menampung 2 orang atau lebih. Kereta kuda ada yang beroda 2 dan ada juga yang beroda 4. Dengan perkembangan kendaraan bermotor, secara praktis kereta kuda mulai lenyap dari jalanan di kota-kota besar dan kereta kuda biasanya hanya ada untuk tujuan wisata maupun tujuan lainnya. Jenis kereta kud...

 

Masjid Mantinganꦩꦱ꧀ꦗꦶꦢ꧀​ꦩꦤ꧀ꦠꦶꦔꦤ꧀ (Hanacaraka)مَسْجِد مَانْتِيْڠَان (Pegon)Bagian depan Masjid Mantingan, dengan struktur terasnya yang berundakAgamaAfiliasiIslamLokasiLokasiMantingan, Jepara, Jawa Tengah, IndonesiaKoordinat5°44′52″S 110°14′40″E / 5.7478733°S 110.2445002°E / -5.7478733; 110.2445002Koordinat: 5°44′52″S 110°14′40″E / 5.7478733°S 110.2445002°E / -5.7478733; ...

Unincorporated community in New Hampshire, United StatesNorth Rochester, New HampshireUnincorporated community1915 catalog cover for Spaulding's Fibre Counters Guaranteed, showing a rendering of the North Rochester plant at night.North RochesterShow map of New HampshireNorth RochesterShow map of the United StatesCoordinates: 43°22′22″N 70°59′07″W / 43.37278°N 70.98528°W / 43.37278; -70.98528CountryUnited StatesStateNew HampshireCountyStraffordCityRochester...

 

TimișTamiš (Тамиш)LokasiNegaraRumania, SerbiaProvinsiCaraș-Severin, Timiș, VojvodinaKotaCaransebeș, Lugoj, PančevoCiri-ciri fisikHulu sungaiPegunungan Banat, Rumania Muara sungaiDanube - lokasidekat Pančevo, Serbia - koordinat44°50′53″N 20°38′08″E / 44.84806°N 20.63556°E / 44.84806; 20.63556Koordinat: 44°50′53″N 20°38′08″E / 44.84806°N 20.63556°E / 44.84806; 20.63556Panjang359 km (223&...

 

Pour un article plus général, voir Attentats de janvier 2015 en France. Attentat contre Charlie Hebdo Journalistes, secouristes et policiers, rue Nicolas-Appert, après l'attaque au journal Charlie Hebdo. Localisation 10, rue Nicolas-Appert et boulevard Richard-Lenoir, 11e arrondissement de Paris, France Cible Collaborateurs de Charlie HebdoPoliciers Coordonnées 48° 51′ 33″ nord, 2° 22′ 13″ est Date 7 janvier 2015 Vers 11 h 30 (UTC+1)...

Halte Margorejo Margorejo Tampak luar Halte Margorejo, 2020LokasiJalan Frontage Ahmad YaniMargorejo, Wonocolo, Surabaya, Jawa Timur 60238IndonesiaKoordinat7°19′5″S 112°43′51″E / 7.31806°S 112.73083°E / -7.31806; 112.73083Koordinat: 7°19′5″S 112°43′51″E / 7.31806°S 112.73083°E / -7.31806; 112.73083Operator Kereta Api IndonesiaDaerah Operasi VIII Surabaya Letakkm 9+430 lintas Surabaya Kota-Probolinggo-Kalisat-Panarukan[...

 

Sede Rai di BolzanoAltri nomiRai Funkhaus Bozen Rai Balsan LocalizzazioneStato Italia RegioneTrentino-Alto Adige LocalitàBolzano IndirizzoPiazza Mazzini, 23 Coordinate46°30′05.48″N 11°20′19.38″E / 46.501523°N 11.338716°E46.501523; 11.338716Coordinate: 46°30′05.48″N 11°20′19.38″E / 46.501523°N 11.338716°E46.501523; 11.338716 Informazioni generaliCondizioniIn uso Inaugurazione12 luglio 1928 UsoSede regionale della Rai RealizzazionePr...

 

Multi-parasport event in Beijing, China XIII Paralympic GamesHost cityBeijing, ChinaMottoOne World, One Dream(Chinese: 同一个世界 同一个梦想 pinyin: Tóng yīge shìjìe tóng yīge mèngxiǎng)Nations146Athletes3,951Events472 in 20 sportsOpening6 SeptemberClosing17 SeptemberOpened byPresident Hu JintaoCauldronHou BinStadiumBeijing National StadiumSummer← Athens 2004London 2012 → Winter← Turin 2006Vancouver 2010 → 2008 Summer Olympics Iran...

Cornelis van der LijnPotret Cornelis van der Lijn Gubernur Jenderal Hindia Belanda ke-10Masa jabatan19 April 1645–7 Oktober 1650PendahuluAntonio van DiemenPenggantiCarel Reyniersz Informasi pribadiLahir1608 Alkmaar, Republik BelandaMeninggal27 Juli 1679(1679-07-27) (umur 70–71) Alkmaar, Republik BelandaKebangsaanBelandaPekerjaanGubernur KolonialSunting kotak info • L • B Cornelis van der Lijn (lahir di Alkmaar, 1608 - meninggal di Alkmaar, 1679 pada umur 71 tahun), adal...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

2010 IAAF WorldIndoor ChampionshipsTrack events60 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen3000 mmenwomen60 m hurdlesmenwomen4 × 400 m relaymenwomenField eventsHigh jumpmenwomenPole vaultmenwomenLong jumpmenwomenTriple jumpmenwomenShot putmenwomenCombined eventsPentathlonwomenHeptathlonmenvte The men's pole vault at the 2010 IAAF World Indoor Championships was held at the ASPIRE Dome on 12 and 13 March. Medalists Gold Silver Bronze Steven Hooker Australia Malte Mohr Ge...

13th-century Scottish esquire For other people named Andrew Moray, see Andrew Moray (disambiguation). Andrew MorayPersonal detailsBornScotland, exact location of birth is not knownDied1297Cause of deathDue to wounds received at the Battle of Stirling BridgeChildrenSir Andrew MurrayParent(s)Sir Andrew Moray of Pettyan unnamed daughter of John Comyn I of BadenochRelativesDavid Moray (uncle)OccupationMilitary leaderMilitary serviceAllegianceKingdom of ScotlandYears of service1297R...

 

Maire de Marseille Armoiries de Marseille Titulaire actuelBenoît Payandepuis le 21 décembre 2020(3 ans, 4 mois et 14 jours) Création 1766 Mandant Conseil municipal de Marseille Durée du mandat 6 ans Premier titulaire Balthazar Fouquet de Jarente Résidence officielle Hôtel de ville de Marseille Rémunération 8 580 euros par mois Site internet marseille.fr modifier  La fonction de maire de Marseille est créée en 1766 par un règlement de Louis XV, succédant au pos...

 

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

Questa voce sull'argomento anime e manga è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Superbookアニメ 親子劇場(Anime Oyako Gekijō)Susy, Jessy e Chris nella prima stagione Serie TV animeAutoreMasakazu Higuchi RegiaOsamu Sekita, Norio Yazawa, Susumu Ishizaki SceneggiaturaAkiyoshi Sakai Char. designAkiko Shitamoto MusicheHiro Takada, Masahito Maruyama StudioTatsunoko ReteTV...

الشيخ  يوسف بن راشد آل الشيخ مبارك معلومات شخصية الميلاد 21 ديسمبر 1900   الزبير  الوفاة 30 يوليو 1995 (94 سنة)   الهفوف  مواطنة سلطنة نجد (1921–1926) مملكة الحجاز ونجد وملحقاتها (1926–1932) السعودية (1932–1995)  الديانة الإسلام[1]،  وأهل السنة والجماعة[1]  الأب راشد ب...

 

Part of a series onLinguistics OutlineHistoryIndex General linguistics Diachronic Lexicography Morphology Phonology Pragmatics Semantics Syntax Syntax–semantics interface Typology Applied linguistics Acquisition Anthropological Applied Computational Conversation analysis Corpus linguistics Discourse analysis Distance Documentation Ethnography of communication Ethnomethodology Forensic History of linguistics Interlinguistics Neurolinguistics Philology Philosophy of language Phonetics Psychol...