Quasilinearization

Two curves on a gridded graph, each marked with crosses at the interpolation nodes. The top shallow curve u_1 has a minimum about 0.71 and the bottom deeper curve u_2 has a minimum about -4. Both curves touch y=1 at x=1 and at x=-1.
Two numerical solutions of the nonlinear example boundary value problem , . Solved by a spectral Chebyshev method and quasilinearization. The top curve used 21 interpolation nodes, and the bottom curve used 34. Both used 3 iterations.

In mathematics, quasilinearization is a technique which replaces a nonlinear differential equation or operator equation (or system of such equations) with a sequence of linear problems, which are presumed to be easier, and whose solutions approximate the solution of the original nonlinear problem with increasing accuracy. It is a generalization of Newton's method; the word "quasilinearization" is commonly used when the differential equation is a boundary value problem.[1][2]

Abstract formulation

Quasilinearization replaces a given nonlinear operator N with a certain linear operator which, being simpler, can be used in an iterative fashion to approximately solve equations containing the original nonlinear operator. This is typically performed when trying to solve an equation such as N(y) = 0 together with certain boundary conditions B for which the equation has a solution y. This solution is sometimes called the "reference solution". For quasilinearization to work, the reference solution needs to exist uniquely (at least locally). The process starts with an initial approximation y0 that satisfies the boundary conditions and is "sufficiently close" to the reference solution y in a sense to be defined more precisely later. The first step is to take the Fréchet derivative of the nonlinear operator N at that initial approximation, in order to find the linear operator L(y0) which best approximates N(y)-N(y0) locally. The nonlinear equation may then be approximated as N(y) = N(yk) + L(yk)( y - yk) + O( y-yk )2, taking k=0. Setting this equation to zero and imposing zero boundary conditions and ignoring higher-order terms gives the linear equation L(yk)( y - yk ) = - N(yk). The solution of this linear equation (with zero boundary conditions) might be called yk+1. Computation of yk for k=1, 2, 3,... by solving these linear equations in sequence is analogous to Newton's iteration for a single equation, and requires recomputation of the Fréchet derivative at each yk. The process can converge quadratically to the reference solution, under the right conditions. Just as with Newton's method for nonlinear algebraic equations, however, difficulties may arise: for instance, the original nonlinear equation may have no solution, or more than one solution, or a multiple solution, in which cases the iteration may converge only very slowly, may not converge at all, or may converge instead to the wrong solution.

The practical test of the meaning of the phrase "sufficiently close" earlier is precisely that the iteration converges to the correct solution. Just as in the case of Newton iteration, there are theorems stating conditions under which one can know ahead of time when the initial approximation is "sufficiently close".

Contrast with discretizing first

One could instead discretize the original nonlinear operator and generate a (typically large) set of nonlinear algebraic equations for the unknowns, and then use Newton's method proper on this system of equations. Generally speaking, the convergence behavior is similar: a similarly good initial approximation will produce similarly good approximate discrete solutions. However, the quasilinearization approach (linearizing the operator equation instead of the discretized equations) seems to be simpler to think about, and has allowed such techniques as adaptive spatial meshes to be used as the iteration proceeds.[3]

Example

As an example to illustrate the process of quasilinearization, we can approximately solve the two-point boundary value problem for the nonlinear node where the boundary conditions are and . The exact solution of the differential equation can be expressed using the Weierstrass elliptic function ℘, like so: where the vertical bar notation means that the invariants are and . Finding the values of and so that the boundary conditions are satisfied requires solving two simultaneous nonlinear equations for the two unknowns and , namely and . This can be done, in an environment where ℘ and its derivatives are available, for instance by Newton's method.[a]

Applying the technique of quasilinearization instead, one finds by taking the Fréchet derivative at an unknown approximation that the linear operator is If the initial approximation is identically on the interval , then the first iteration (at least) can be solved exactly, but is already somewhat complicated. A numerical solution instead, for instance by a Chebyshev spectral method using Chebyshev—Lobatto points for gives a solution with residual less than after three iterations; that is, is the exact solution to , where the maximum value of is less than 1 on the interval . This approximate solution (call it ) agrees with the exact solution with

Other values of and give other continuous solutions to this nonlinear two-point boundary-value problem for ODE, such as The solution corresponding to these values plotted in the figure is called . Yet other values of the parameters can give discontinuous solutions because ℘ has a double pole at zero and so has a double pole at . Finding other continuous solutions by quasilinearization requires different initial approximations to the ones used here. The initial approximation approximates the exact solution and can be used to generate a sequence of approximations converging to . Both approximations are plotted in the accompanying figure.

Notes

  1. ^ For more information about elliptic functions, see Lawden (1989).[4]

See also

References

  1. ^ Ascher, Uri M.; Mattheij, Robert M.; Russell, Robert D. (1995). Numerical solution of boundary value problems for ordinary differential equations. SIAM.
  2. ^ Sylvester, R.J.; Meyer, F. (June 1965). "Two point boundary problems by quasilinearization". Journal of the Society for Industrial and Applied Mathematics. 13 (2): 586–602. doi:10.1137/0113038. JSTOR 2946451. Retrieved 31 March 2022.
  3. ^ Bornemann, Folkmar (1991). An Adaptive Multilevel Approach to Parabolic Equations in Two Space Dimensions. ZIB. Retrieved 6 March 2022.
  4. ^ Lawden, Derek F. (1989). Elliptic Functions and Applications. New York: Springer-Verlag. ISBN 0-387-96965-9.

Further reading

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Fakultas Farmasi Universitas Gadjah Mada – berita · surat kabar · buku · cendekiawan · JSTOR Fakultas FarmasiUniversitas Gadjah MadaLogo Universitas Gadjah MadaJenisPerguruan Tinggi Negeri Badan HukumDid...

 

Chibi beralih ke halaman ini. Untuk grup vokal Indonesia, lihat Cherrybelle. Versi Chibi dari Wikipe-tan. Chibi (ちびcode: ja is deprecated , juga bisa ditulis 禿び[1]) adalah kata Bahasa Jepang yang berarti orang pendek atau anak kecil. Kata ini populer di kalangan penggemar manga dan anime. Arti kata ini adalah seseorang atau binatang yang pendek/kecil. Contoh dari penggunaan kata ini yang populer adalah Chibiusa, salah satu nama karakter dari Sailor Moon dikenal dengan Usagi Ke...

 

Kue Putri Selat Putri Selat adalah kue tradisional khas masyarakat Banjar di Kalimantan Selatan. Kue ini terdiri dari 3 lapisan dengan masing-masing lapisan memiliki cita rasanya sendiri. Pada umumnya lapisan bawah terdiri dari bahan dasar adonan tepung dan kelapa parut, lapisan tengah terbuat dari adonan gula merah dan lapisan atas berupa berbahan dasar daun suji dan berwarna hijau. Sehingga memberikan cita rasa manis, gurih dan legit dalam satu potongan.[1] Kue ini biasanya dijumpai...

Freeway interchange in Los Angeles, California This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: East Los Angeles Interchange – news · newspapers · books · scholar · JSTOR (July 2008) (Learn how and when to remove this template message) East Los Angeles InterchangeEugene A. Obregon Memorial InterchangePart of ...

 

Nintendo PowerBerkas:Nintendo Power.jpgKeluaran pertama Nintendo Power, 1988Kepala PenyuntingSteve ThomasonMantan editorChris SlateStaf penulisPhil TheobaldKategoriPermainan video dan AksesorisFrekuensi6x per tahun, Januari 1991 per bulanFormatJurnal, majalahSirkulasi475,000 (2012)[1]Terbitan pertamaJuli/Agustus 1988; 35 tahun lalu (1988-08)Terbitan terakhirAngka11 Desember 2012 (2012-12-11)285PerusahaanNintendo of America (1988–2007)Future US (2007–2012)NegaraAmerika Se...

 

Cet article est une ébauche concernant la NASCAR. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Wood Brothers Racing Caractéristiques Caractéristiques de l'écurie Discipline NASCAR Localisation Mooresville, Caroline du Nord Dirigeants et pilotes Président Glen et Leonard Wood Pilotes no 21 - Matt DiBenedetto Anciens pilotes no 21 - Cale Yarborough no 21 - David Pearson no 21 - Elliott ...

Questa voce sull'argomento politici finlandesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Reino KuuskoskiReino Kuuskoski, 1958. 38º Primo ministro della FinlandiaDurata mandato26 aprile 1958 –29 agosto 1958 PredecessoreRainer von Fieandt SuccessoreKarl-August Fagerholm Ministro della giustiziaDurata mandato1953 –1954 PredecessoreSven Högström SuccessoreYrjö Puhakka Dati generaliPartito politicoIndipendente...

 

British novelist and former spy (1931–2020) John le CarréLe Carré in Hamburg, 2008BornDavid John Moore Cornwell(1931-10-19)19 October 1931Poole, EnglandDied12 December 2020(2020-12-12) (aged 89)Truro, EnglandOccupationNovelistintelligence officerCitizenshipUnited KingdomIreland (c. 2020)EducationUniversity of BernLincoln College, Oxford (BA)GenreSpy fictionNotable worksThe Spy Who Came in from the ColdTinker Tailor Soldier SpyThe Honourable SchoolboySmiley's PeopleThe Little Dr...

 

طواف فرنساTour de France   معلومات عامة الرياضة سباق الدراجات على الطريق  البلد فرنسا  المنظم منظمة أموري سبورت عدد النسخ 100 التواتر كل سنة وضع المشاركين محترفين الموقع الرسمي www.letour.fr قائمة الفائزين التسلسل الزمني للمنافسة سباق طواف فرنسا 2013 سباق طواف فرنسا 2014 تعديل مصدر...

La Mercedes Classe E est une grande routière Une grande routière, ou simplement routière, est une automobile du segment E. Ces voitures puissantes sont plus spacieuses ou plus luxueuses qu'une familiale routière tout en restant plus accessibles qu'une voiture de luxe. Ce segment correspond aux full-size cars en Amérique du Nord. On y trouve des voitures avec un grand empattement pouvant confortablement transporter cinq personnes (voire six pour certains modèles américains), souvent mue...

 

هنودمعلومات عامةنسبة التسمية الهند التعداد الكليالتعداد قرابة 1.21 مليار[1][2]تعداد الهند عام 2011ق. 1.32 مليار[3]تقديرات عام 2017ق. 30.8 مليون[4]مناطق الوجود المميزةبلد الأصل الهند البلد الهند  الهند نيبال 4,000,000[5] الولايات المتحدة 3,982,398[6] الإمار...

 

这是马来族人名,“尤索夫”是父名,不是姓氏,提及此人时应以其自身的名“法迪拉”为主。 尊敬的拿督斯里哈芝法迪拉·尤索夫Fadillah bin Haji YusofSSAP DGSM PGBK 国会议员 副首相 第14任马来西亚副首相现任就任日期2022年12月3日与阿末扎希同时在任君主最高元首苏丹阿都拉陛下最高元首苏丹依布拉欣·依斯迈陛下首相安华·依布拉欣前任依斯迈沙比里 马来西亚能源转型与�...

2014 British spy thriller television series For the Ugandan satire television series, see The Honourables. The Honourable WomanGenrePolitical thrillerSpy thrillerWritten byHugo BlickDirected byHugo BlickStarringMaggie GyllenhaalPhilip ArdittiLubna AzabalAndrew BuchanEve BestLindsay DuncanJanet McTeerTobias MenziesIgal NaorGenevieve O'ReillyKatherine ParkinsonStephen ReaComposerMartin PhippsCountry of originUnited KingdomOriginal languageEnglishNo. of episodes8 (list of episodes)ProductionExec...

 

Chronologies Données clés 1712 1713 1714  1715  1716 1717 1718Décennies :1680 1690 1700  1710  1720 1730 1740Siècles :XVIe XVIIe  XVIIIe  XIXe XXeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et Sculpture), (), Littérature (), Musique (Classique) et Théâtre   Ingénierie (), Architecture et ()   Politique Droit et ()   Religion (,)   Sci...

 

Urdu poet (1908–1972) Baqi SiddiquiBornMuhammad AfzalDecember 20, 1905Rawalpindi, Punjab, British IndiaDiedJanuary 8, 1972OccupationPoetYears active1928–1972 Baqi Siddiqui (December 20, 1905 – January 8, 1972) is the pen name of a Punjabi, Pothohari, and Urdu poet from Pakistan born as Muhammad Afzal. He is known for his ghazal Daagh e Dil Humko Yaad Anay Lagay. Early life and career Baqi Siddiqui was born on December 20, 1905, in Saham village in Rawalpindi, Punjab, British India....

Political party National States' Rights Party Flag of the National States' Rights Party, based on the Confederate battle flagLeaderEdward Reed FieldsJ. B. StonerFounderEdward Reed FieldsFounded1958Dissolved1987HeadquartersKnoxville, TennesseeMembership (1970)150IdeologyNeo-fascismSegregationismWhite supremacyAntisemitismPolitical positionFar-rightColorsRed, blue, and white(party and flag colors) The National States' Rights Party was a white supremacist[1] political party that bri...

 

Organ found inside most animals This article is about the internal organ. For other uses, see Heart (disambiguation). Cardiac redirects here. For the computer programming tool, see CARDIAC. For the comics character, see Cardiac (character). HeartThe human heartDetailsSystemCirculatoryArteryAorta,[a] pulmonary trunk and right and left pulmonary arteries,[b] right coronary artery, left main coronary artery[c]VeinSuperior vena cava, inferior vena cava,[d] right an...

 

Singaporean professional footballer In this Malay name, there is no surname or family name. The name Swandi is a patronymic, and the person should be referred to by their given name, Adam. Adam Swandi Adam in action for Lion City Sailors in the 2023–24 AFC Champions League match.Personal informationFull name Adam bin Swandi[1]Date of birth (1996-01-12) 12 January 1996 (age 28)Place of birth SingaporeHeight 1.70 m (5 ft 7 in)Position(s) Midfielder / WingerTeam inf...

Town in Java Not to be confused with the province of Banten in Java Island or the city of Batam in Riau Islands of Indonesia. 6°02′33″S 106°09′39″E / 6.0424495°S 106.1609316°E / -6.0424495; 106.1609316 Banten city from illustration c. 1724. Banten, also written as Bantam, is a port town near the western end of Java, Indonesia. It has a secure harbour at the mouth of Banten River, a navigable passage for light craft into the island's interior. The town is cl...

 

ItaliaUniformi di gara Casa Trasferta Sport Hockey su ghiaccio FederazioneFederazione Italiana Sport del Ghiaccio Colori               SoprannomeLe Azzurre (The Blues) SelezionatoreMassimo Fedrizzi Record presenzeLinda De Rocco (91) CapocannoniereFederica Zandegiacomo (32) Record puntiEleonora Dalprà (59) Ranking IIHF17° (2022) Miglior ranking11° (2006) Peggior ranking22° (2013) Sitohockey.fisg.itEsordio internazionale Rep. Ceca ...