Quantization (physics)

Quantization (in British English quantisation) is the systematic transition procedure from a classical understanding of physical phenomena to a newer understanding known as quantum mechanics. It is a procedure for constructing quantum mechanics from classical mechanics. A generalization involving infinite degrees of freedom is field quantization, as in the "quantization of the electromagnetic field", referring to photons as field "quanta" (for instance as light quanta). This procedure is basic to theories of atomic physics, chemistry, particle physics, nuclear physics, condensed matter physics, and quantum optics.

Historical overview

In 1901, when Max Planck was developing the distribution function of statistical mechanics to solve the ultraviolet catastrophe problem, he realized that the properties of blackbody radiation can be explained by the assumption that the amount of energy must be in countable fundamental units, i.e. amount of energy is not continuous but discrete. That is, a minimum unit of energy exists and the following relationship holds for the frequency . Here, is called the Planck constant, which represents the amount of the quantum mechanical effect. It means a fundamental change of mathematical model of physical quantities.

In 1905, Albert Einstein published a paper, "On a heuristic viewpoint concerning the emission and transformation of light", which explained the photoelectric effect on quantized electromagnetic waves.[1] The energy quantum referred to in this paper was later called "photon".  In July 1913, Niels Bohr used quantization to describe the spectrum of a hydrogen atom in his paper "On the constitution of atoms and molecules".

The preceding theories have been successful, but they are very phenomenological theories.  However, the French mathematician Henri Poincaré first gave a systematic and rigorous definition of what quantization is in his 1912 paper "Sur la théorie des quanta".[2][3]

The term "quantum physics" was first used in Johnston's Planck's Universe in Light of Modern Physics.  (1931).

Canonical quantization

Canonical quantization develops quantum mechanics from classical mechanics. One introduces a commutation relation among canonical coordinates. Technically, one converts coordinates to operators, through combinations of creation and annihilation operators. The operators act on quantum states of the theory. The lowest energy state is called the vacuum state.

Quantization schemes

Even within the setting of canonical quantization, there is difficulty associated to quantizing arbitrary observables on the classical phase space. This is the ordering ambiguity: classically, the position and momentum variables x and p commute, but their quantum mechanical operator counterparts do not. Various quantization schemes have been proposed to resolve this ambiguity,[4] of which the most popular is the Weyl quantization scheme. Nevertheless, the Groenewold–van Hove theorem dictates that no perfect quantization scheme exists. Specifically, if the quantizations of x and p are taken to be the usual position and momentum operators, then no quantization scheme can perfectly reproduce the Poisson bracket relations among the classical observables.[5] See Groenewold's theorem for one version of this result.

Covariant canonical quantization

There is a way to perform a canonical quantization without having to resort to the non covariant approach of foliating spacetime and choosing a Hamiltonian. This method is based upon a classical action, but is different from the functional integral approach.

The method does not apply to all possible actions (for instance, actions with a noncausal structure or actions with gauge "flows"). It starts with the classical algebra of all (smooth) functionals over the configuration space. This algebra is quotiented over by the ideal generated by the Euler–Lagrange equations. Then, this quotient algebra is converted into a Poisson algebra by introducing a Poisson bracket derivable from the action, called the Peierls bracket. This Poisson algebra is then ℏ -deformed in the same way as in canonical quantization.

In quantum field theory, there is also a way to quantize actions with gauge "flows". It involves the Batalin–Vilkovisky formalism, an extension of the BRST formalism.

Deformation quantization

One of the earliest attempts at a natural quantization was Weyl quantization, proposed by Hermann Weyl in 1927.[6] Here, an attempt is made to associate a quantum-mechanical observable (a self-adjoint operator on a Hilbert space) with a real-valued function on classical phase space. The position and momentum in this phase space are mapped to the generators of the Heisenberg group, and the Hilbert space appears as a group representation of the Heisenberg group. In 1946, H. J. Groenewold[7] considered the product of a pair of such observables and asked what the corresponding function would be on the classical phase space. This led him to discover the phase-space star-product of a pair of functions. More generally, this technique leads to deformation quantization, where the ★-product is taken to be a deformation of the algebra of functions on a symplectic manifold or Poisson manifold. However, as a natural quantization scheme (a functor), Weyl's map is not satisfactory.

For example, the Weyl map of the classical angular-momentum-squared is not just the quantum angular momentum squared operator, but it further contains a constant term 2/2. (This extra term offset is pedagogically significant, since it accounts for the nonvanishing angular momentum of the ground-state Bohr orbit in the hydrogen atom, even though the standard QM ground state of the atom has vanishing l.)[8]

As a mere representation change, however, Weyl's map is useful and important, as it underlies the alternate equivalent phase space formulation of conventional quantum mechanics.

Geometric quantization

In mathematical physics, geometric quantization is a mathematical approach to defining a quantum theory corresponding to a given classical theory. It attempts to carry out quantization, for which there is in general no exact recipe, in such a way that certain analogies between the classical theory and the quantum theory remain manifest. For example, the similarity between the Heisenberg equation in the Heisenberg picture of quantum mechanics and the Hamilton equation in classical physics should be built in.

A more geometric approach to quantization, in which the classical phase space can be a general symplectic manifold, was developed in the 1970s by Bertram Kostant and Jean-Marie Souriau. The method proceeds in two stages.[9] First, once constructs a "prequantum Hilbert space" consisting of square-integrable functions (or, more properly, sections of a line bundle) over the phase space. Here one can construct operators satisfying commutation relations corresponding exactly to the classical Poisson-bracket relations. On the other hand, this prequantum Hilbert space is too big to be physically meaningful. One then restricts to functions (or sections) depending on half the variables on the phase space, yielding the quantum Hilbert space.

Path integral quantization

A classical mechanical theory is given by an action with the permissible configurations being the ones which are extremal with respect to functional variations of the action. A quantum-mechanical description of the classical system can also be constructed from the action of the system by means of the path integral formulation.

Other types

See also

References

  • Ali, S. T., & Engliš, M. (2005). "Quantization methods: a guide for physicists and analysts". Reviews in Mathematical Physics 17 (04), 391-490. arXiv:math-ph/0405065doi:10.1142/S0129055X05002376
  • Abraham, R. & Marsden (1985): Foundations of Mechanics, ed. Addison–Wesley, ISBN 0-8053-0102-X
  • Hall, Brian C. (2013), Quantum Theory for Mathematicians, Graduate Texts in Mathematics, vol. 267, Springer, Bibcode:2013qtm..book.....H
  • Woodhouse, Nicholas M. J. (2007). Geometric quantization. Oxford mathematical monographs (2. ed., repr ed.). Oxford: Clarendon Press. ISBN 978-0-19-850270-8.
  • Landsman, N. P. (2005-07-25). "Between classical and quantum". arXiv:quant-ph/0506082.
  • M. Peskin, D. Schroeder, An Introduction to Quantum Field Theory (Westview Press, 1995) ISBN 0-201-50397-2
  • Weinberg, Steven, The Quantum Theory of Fields (3 volumes)
  • Curtright, T. L.; Zachos, C. K. (2012). "Quantum Mechanics in Phase Space". Asia Pacific Physics Newsletter. 01: 37–46. arXiv:1104.5269. doi:10.1142/S2251158X12000069. S2CID 119230734.
  • G. Giachetta, L. Mangiarotti, G. Sardanashvily, Geometric and Algebraic Topological Methods in Quantum Mechanics (World Scientific, 2005) ISBN 981-256-129-3
  • Todorov, Ivan (2012). ""Quantization is a mystery"". arXiv:1206.3116 [math-ph].

Notes

  1. ^ Folsing, Albrecht (1997), Albert Einstein: A Biography, trans. Ewald Osers, Viking
  2. ^ McCormmach, Russell (Spring 1967). "Henri Poincaré and the Quantum Theory". Isis. 58 (1): 37–55. doi:10.1086/350182. S2CID 120934561.
  3. ^ Irons, F.E. (August 2001). "Poincaré's 1911–12 proof of quantum discontinuity interpreted as applying to atoms". American Journal of Physics. 69 (8): 879–84. Bibcode:2001AmJPh..69..879I. doi:10.1119/1.1356056.
  4. ^ Hall 2013 Chapter 13
  5. ^ Hall 2013 Theorem 13.13
  6. ^ Weyl, H. (1927). "Quantenmechanik und Gruppentheorie". Zeitschrift für Physik. 46 (1–2): 1–46. Bibcode:1927ZPhy...46....1W. doi:10.1007/BF02055756. S2CID 121036548.
  7. ^ Groenewold, H.J. (1946). "On the principles of elementary quantum mechanics". Physica. 12 (7): 405–460. Bibcode:1946Phy....12..405G. doi:10.1016/S0031-8914(46)80059-4. ISSN 0031-8914.
  8. ^ Dahl, Jens Peder; Schleich, Wolfgang P. (2002). "Concepts of radial and angular kinetic energies". Physical Review A. 65 (2): 022109. arXiv:quant-ph/0110134. Bibcode:2002PhRvA..65b2109D. doi:10.1103/PhysRevA.65.022109. ISSN 1050-2947. S2CID 39409789.
  9. ^ Hall 2013 Chapters 22 and 23

Read other articles:

1986 film by Donald Brittain This article is about the Canadian miniseries. For the 1968 British television series, see The Champions. For other uses, see Champion (disambiguation). The ChampionsGenreDocumentaryDirected byDonald BrittainCountry of originCanadaOriginal languageEnglishNo. of episodes3Original releaseNetworkCBC TelevisionRelease1978 (1978) –1986 (1986) The Champions is a three-part Canadian documentary mini-series on the lives of Canadian political titans and ad...

 

Yang MuliaJorge Arturo Medina EstévezPrefek Emeritus Kongregasi Ibadah Ilahi dan Tata-tertib SakramenMedina Estévez pada 2011GerejaGereja Katolik RomaPenunjukan21 Juni 1996Masa jabatan berakhir1 Oktober 2002PendahuluJean Jérôme Hamer O.P.PenerusFrancis ArinzeJabatan lainKardinal-Imam pro hac vice Santa Sabina (2008–21)ImamatTahbisan imam12 Juni 1954oleh Pio Alberto Fariña FariñaTahbisan uskup6 Januari 1985oleh Paus Yohanes Paulus IIPelantikan kardinal21 February 1998oleh Pau...

 

Emily Donelson Ibu Negara Amerika Serikat ke-7Masa jabatan4 Maret 1829 – 19 Desember 1836 PendahuluLouisa AdamsPenggantiSarah Yorke Jackson Informasi pribadiLahir(1807-06-01)1 Juni 1807Donelson, TennesseeMeninggal19 Desember 1836(1836-12-19) (umur 29)Nashville, TennesseeSuami/istriAndrew Jackson A.J. DonelsonHubunganJohn Donelson (father)Rachel Donelson Jackson (aunt)PekerjaanIbu Negara Amerika SerikatSunting kotak info • L • B Emily Tennessee Donelson (1 Juni 18...

الدنمارك البلد ؟؟ الاتحاد اتحاد الدنمارك لكرة اليد المدرب Ulrik Wilbek القائد نيكلاس لندن جاكوبسن الأكثر مشاركة لارس كريستيانسن (كرة يد) (272) الهداف لارس كريستيانسن (كرة يد) (1151) الزي الأساسي الزي الإحتياطي ألعاب أولمبية صيفية أفضل نتيجة المركز الأول (2016) بطولة العالم لكرة اليد ال...

 

National Hockey League team in Raleigh, North Carolina This article is about the hockey team. For a history of hurricanes occurring in North Carolina, see List of North Carolina hurricanes. Carolina Hurricanes 2023–24 Carolina Hurricanes seasonConferenceEasternDivisionMetropolitanFounded1972HistoryNew England Whalers1972–1979 (WHA)Hartford Whalers1979–1997 (NHL) Carolina Hurricanes1997–presentHome arenaPNC ArenaCityRaleigh, North CarolinaTeam colorsRed, white, gray, black[1]&#...

 

Constituency of the Provincial Assembly of Sindh, Pakistan PS-45 Mirpur Khas-IConstituencyfor the Provincial Assembly of SindhRegionHussain Bux Mari Tehsil and Mirpur Khas Tehsil (partly) including Mirpur Khas city in Mirpur Khas DistrictElectorate243,176 [1]Current constituencyMember(s)VacantCreated fromPS-64 Mirpurkhas-I (2002-2018) PS-47 Mirpur Khas-I (2018-2023) PS-45 Mirpur Khas-I (پی ایس-45، مِيرپورخاص-1) is a constituency of the Provincial Assembly of Sindh.[...

Berikut merupakan daftar Perdana Menteri Mozambik. Perdana Menteri Republik MozambikLambang MozambikPetahanaCarlos Agostinho do Rosáriosejak 17 Januari 2015Ditunjuk olehFilipe Nyusi,sebagai Presiden MozambikPejabat perdanaJoaquim ChissanoDibentuk20 September 1974Situs webhttp://www.presidencia.gov.mz/ Lama Jabatan Foto Incumbent Afilasi Catatan Provinsi Overseas Mozambik Otonomi 20 September 1974 to 25 June 1975 Joaquim Chissano, Perdana menteri FRELIMO Republik Rakyat Mozambik Merdeka ...

 

Kejadian 27Sebuah halaman dari Kodeks Aleppo, difoto pada tahun 1887 oleh William Wickes, memuat Kejadian 26:35 (החתי) sampai 27:30 (ויהי אך). Menunjukkan adanya pemisah parashah terbuka tunggal {S} pada 27:1 (ויהי כי זקן יצחק) sebagai sub-bagian Parashat ToledotKitabKitab KejadianKategoriTauratBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen1← pasal 26 pasal 28 → Kejadian 27 (disingkat Kej 27) adalah bagian dari Kitab Kejadian dalam Alkitab Ib...

 

CH-148 Cyclone Un CH-148 de l'Aviation royale canadienne exposé au Salon du Bourget en 2012. Rôle Hélicoptère maritime Constructeur Sikorsky Aircraft Premier vol 15 novembre 2008 Mise en service 2015 Date de retrait Toujours en service Investissement 7,6 milliards canadiens Nombre construit 18 livrés en mars 2020, 28 prévus. Équipage 4 + 22 soldats Motorisation Moteur General Electric CT7-8A Nombre 2 Type Turbomoteurs Puissance unitaire 3 000 ch Nombre de pales 4 Dimensions ...

ロバート・デ・ニーロRobert De Niro 2011年のデ・ニーロ生年月日 (1943-08-17) 1943年8月17日(80歳)出生地 アメリカ合衆国・ニューヨーク州ニューヨーク市身長 177 cm職業 俳優、映画監督、映画プロデューサージャンル 映画、テレビドラマ活動期間 1963年 -配偶者 ダイアン・アボット(1976年 - 1988年)グレイス・ハイタワー(1997年 - )主な作品 『ミーン・ストリート』(1973年)...

 

Palestinian politician (1938–2001) Abu Ali Mustafaأبو علي مصطفىGeneral Secretary of the Popular Front for the Liberation of PalestineIn officeJuly 2000 – 27 August 2001Preceded byGeorge HabashSucceeded byAhmad Sa'adat Personal detailsBornMustafa Zabri14 May 1938Arraba, Jenin, Mandatory PalestineDied27 August 2001 (aged 63)Al-Bireh, PalestineNationalityPalestinianPolitical partyPopular Front for the Liberation of PalestineOther politicalaffiliationsArab Nationalist Move...

 

Playground in Manhattan, New York Not to be confused with Heckscher Playground (Brooklyn). 40°46′07″N 73°58′40″W / 40.768732°N 73.977740°W / 40.768732; -73.977740 Heckscher Playground as seen from Rat Rock Heckscher Playground is a play area located in New York City's Central Park, located close to Central Park South between Sixth Avenue and Seventh Avenue. It is the oldest and largest of Central Park's 22 playgrounds.[a] Opened in 1926, Heckscher P...

Boy APoster filmSutradaraJohn CrowleyProduser Lynn Horsford Nick Marston Tally Garner SkenarioMark O'RoweBerdasarkanBoy Aoleh Jonathan TrigellPemeran Andrew Garfield Peter Mullan Penata musikPaddy CunneenSinematograferRob HardyPenyuntingLucia ZucchettiPerusahaanproduksi Film4 Cuba Pictures DistributorChannel 4Tanggal rilis 08 September 2007 (2007-09-08) (TIFF) 26 November 2007 (2007-11-26) (Inggris) Durasi106 menitNegaraInggrisBahasaInggrisPendapatankotor$1.7 juta[...

 

سينتر ولينغتون   الإحداثيات 43°42′00″N 80°22′00″W / 43.7°N 80.366666666667°W / 43.7; -80.366666666667   [1] تاريخ التأسيس 1 يناير 1999  تقسيم إداري  البلد كندا[2]  معلومات أخرى رمز جيونيمز 5919274  الموقع الرسمي الموقع الرسمي  تعديل مصدري - تعديل   سينتر ولينغتون، أون...

 

Pietro GualdiInformación personalNacimiento 2 de julio de 1808Carpi, Modena, Italia Fallecimiento 4 de enero de 1857Nacionalidad ItalianoEducaciónEducación Academia de Artes de MilánEducado en Academia de Bellas Artes de Brera Información profesionalOcupación Pintor, arquitecto, litógrafo[editar datos en Wikidata] Pedro Gualdi o Pietro Gualdi (Carpi, Modena, Italia, 2 de julio de 1808-Nueva Orleans, 4 de enero de 1857) fue un pintor de paisaje, arquitecto, artista, litógrafo...

American philanthropic organization The Rockefeller FoundationFoundedMay 14, 1913; 111 years ago (1913-05-14)FoundersJohn D. RockefellerJohn D. Rockefeller Jr.Frederick Taylor GatesTypeNon-operating private foundation(IRS exemption status): 501(c)(3)[1]Tax ID no. 13-1659629Location420 Fifth Avenue, New York City, New York, U.S.MethodEndowmentKey peopleRajiv Shah(president)Endowment$6.3 billion (2022)[2]Websiterockefellerfoundation.org The Rockefeller Foundati...

 

Radio station facility Radio tower and mast Radio mast The Richtfunkstelle Berlin-Frohnau (Directional radio station Berlin-Frohnau) was a facility for directional radio services in Frohnau (a locality in the Reinickendorf borough of Berlin; during the Cold War, the northernmost locality of West Berlin). Before German reunification, the facility served as a microwave transmission link between West Berlin and West Germany. It first used only an overhorizon directional link. For this link betwe...

 

American football player (born 1955) This article is about the American football player. For the Canadian hockey player, see Earl Campbell (ice hockey). American football player Earl CampbellCampbell signing autographs in 2009No. 34, 35Position:Running backPersonal informationBorn: (1955-03-29) March 29, 1955 (age 69)Tyler, Texas, U.S.Height:5 ft 11 in (1.80 m)Weight:232 lb (105 kg)Career informationHigh school:John Tyler (Tyler, Texas)College:Texas (1974–1977)...

Yankee tunesmith and hatmaker Portrait of Timothy Swan, composer Timothy Swan (1758–1842)[1] was a Yankee tunesmith and hatmaker born in Worcester, Massachusetts, USA. The son of goldsmith William Swan,[2] Swan lived in small towns along the Connecticut River in Connecticut and Massachusetts for most of his life. Swan's compositional output consisted mostly of psalm and hymn settings, referred to as psalmody. These tunes and settings were produced for choirs and singing ...

 

Triuggiocomune Triuggio – Vedutail fiume Lambro a Triuggio LocalizzazioneStato Italia Regione Lombardia Provincia Monza e Brianza AmministrazioneSindacoPietro Giovanni Maria Cicardi (lista civica Progetto Triuggio) dal 27-5-2019 TerritorioCoordinate45°40′N 9°16′E45°40′N, 9°16′E (Triuggio) Altitudine231 m s.l.m. Superficie8,34 km² Abitanti8 642[1] (31-12-2021) Densità1 036,21 ab./km² FrazioniTregasio, Canonica Lambro,...