Q-Gaussian distribution

q-Gaussian
Probability density function
Probability density plots of q-Gaussian distributions
Parameters shape (real)
(real)
Support for
for
PDF
CDF see text
Mean , otherwise undefined
Median
Mode
Variance

Skewness
Excess kurtosis

The q-Gaussian is a probability distribution arising from the maximization of the Tsallis entropy under appropriate constraints. It is one example of a Tsallis distribution. The q-Gaussian is a generalization of the Gaussian in the same way that Tsallis entropy is a generalization of standard Boltzmann–Gibbs entropy or Shannon entropy.[1] The normal distribution is recovered as q → 1.

The q-Gaussian has been applied to problems in the fields of statistical mechanics, geology, anatomy, astronomy, economics, finance, and machine learning.[citation needed] The distribution is often favored for its heavy tails in comparison to the Gaussian for 1 < q < 3. For the q-Gaussian distribution is the PDF of a bounded random variable. This makes in biology and other domains[2] the q-Gaussian distribution more suitable than Gaussian distribution to model the effect of external stochasticity. A generalized q-analog of the classical central limit theorem[3] was proposed in 2008, in which the independence constraint for the i.i.d. variables is relaxed to an extent defined by the q parameter, with independence being recovered as q → 1. However, a proof of such a theorem is still lacking.[4]

In the heavy tail regions, the distribution is equivalent to the Student's t-distribution with a direct mapping between q and the degrees of freedom. A practitioner using one of these distributions can therefore parameterize the same distribution in two different ways. The choice of the q-Gaussian form may arise if the system is non-extensive, or if there is lack of a connection to small samples sizes.

Characterization

Probability density function

The standard q-Gaussian has the probability density function [3]

where

is the q-exponential and the normalization factor is given by

Note that for the q-Gaussian distribution is the PDF of a bounded random variable.

Cumulative density function

For cumulative density function is [5]

where is the hypergeometric function. As the hypergeometric function is defined for |z| < 1 but x is unbounded, Pfaff transformation could be used.

For ,

Entropy

Just as the normal distribution is the maximum information entropy distribution for fixed values of the first moment and second moment (with the fixed zeroth moment corresponding to the normalization condition), the q-Gaussian distribution is the maximum Tsallis entropy distribution for fixed values of these three moments.

Student's t-distribution

While it can be justified by an interesting alternative form of entropy, statistically it is a scaled reparametrization of the Student's t-distribution introduced by W. Gosset in 1908 to describe small-sample statistics. In Gosset's original presentation the degrees of freedom parameter ν was constrained to be a positive integer related to the sample size, but it is readily observed that Gosset's density function is valid for all real values of ν.[citation needed] The scaled reparametrization introduces the alternative parameters q and β which are related to ν.

Given a Student's t-distribution with ν degrees of freedom, the equivalent q-Gaussian has

with inverse

Whenever , the function is simply a scaled version of Student's t-distribution.

It is sometimes argued that the distribution is a generalization of Student's t-distribution to negative and or non-integer degrees of freedom. However, the theory of Student's t-distribution extends trivially to all real degrees of freedom, where the support of the distribution is now compact rather than infinite in the case of ν < 0.[citation needed]

Three-parameter version

As with many distributions centered on zero, the q-Gaussian can be trivially extended to include a location parameter μ. The density then becomes defined by

Generating random deviates

The Box–Muller transform has been generalized to allow random sampling from q-Gaussians.[6] The standard Box–Muller technique generates pairs of independent normally distributed variables from equations of the following form.

The generalized Box–Muller technique can generates pairs of q-Gaussian deviates that are not independent. In practice, only a single deviate will be generated from a pair of uniformly distributed variables. The following formula will generate deviates from a q-Gaussian with specified parameter q and

where is the q-logarithm and

These deviates can be transformed to generate deviates from an arbitrary q-Gaussian by

Applications

Physics

It has been shown that the momentum distribution of cold atoms in dissipative optical lattices is a q-Gaussian.[7]

The q-Gaussian distribution is also obtained as the asymptotic probability density function of the position of the unidimensional motion of a mass subject to two forces: a deterministic force of the type (determining an infinite potential well) and a stochastic white noise force , where is a white noise. Note that in the overdamped/small mass approximation the above-mentioned convergence fails for , as recently shown.[8]

Finance

Financial return distributions in the New York Stock Exchange, NASDAQ and elsewhere have been interpreted as q-Gaussians.[9][10]

See also

Notes

  1. ^ Tsallis, C. Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years. Braz. J. Phys. 2009, 39, 337–356
  2. ^ d'Onofrio A. (ed.) Bounded Noises in Physics, Biology, and Engineering. Birkhauser (2013)
  3. ^ a b Umarov, Sabir; Tsallis, Constantino; Steinberg, Stanly (2008). "On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics" (PDF). Milan J. Math. 76. Birkhauser Verlag: 307–328. doi:10.1007/s00032-008-0087-y. S2CID 55967725. Retrieved 2011-07-27.
  4. ^ Hilhorst, H.J. (2010), "Note on a q-modified central limit theorem", Journal of Statistical Mechanics: Theory and Experiment, 2010 (10): 10023, arXiv:1008.4259, Bibcode:2010JSMTE..10..023H, doi:10.1088/1742-5468/2010/10/P10023, S2CID 119316670.
  5. ^ https://reference.wolframcloud.com/language/ref/TsallisQGaussianDistribution.html [bare URL]
  6. ^ W. Thistleton, J.A. Marsh, K. Nelson and C. Tsallis, Generalized Box–Muller method for generating q-Gaussian random deviates, IEEE Transactions on Information Theory 53, 4805 (2007)
  7. ^ Douglas, P.; Bergamini, S.; Renzoni, F. (2006). "Tunable Tsallis Distributions in Dissipative Optical Lattices" (PDF). Physical Review Letters. 96 (11): 110601. Bibcode:2006PhRvL..96k0601D. doi:10.1103/PhysRevLett.96.110601. PMID 16605807.
  8. ^ Domingo, Dario; d’Onofrio, Alberto; Flandoli, Franco (2017). "Boundedness vs unboundedness of a noise linked to Tsallis q-statistics: The role of the overdamped approximation". Journal of Mathematical Physics. 58 (3). AIP Publishing: 033301. arXiv:1709.08260. Bibcode:2017JMP....58c3301D. doi:10.1063/1.4977081. ISSN 0022-2488. S2CID 84178785.
  9. ^ Borland, Lisa (2002-08-07). "Option Pricing Formulas Based on a Non-Gaussian Stock Price Model". Physical Review Letters. 89 (9). American Physical Society (APS): 098701. arXiv:cond-mat/0204331. Bibcode:2002PhRvL..89i8701B. doi:10.1103/physrevlett.89.098701. ISSN 0031-9007. PMID 12190447. S2CID 5740827.
  10. ^ L. Borland, The pricing of stock options, in Nonextensive Entropy – Interdisciplinary Applications, eds. M. Gell-Mann and C. Tsallis (Oxford University Press, New York, 2004)

Further reading

Read other articles:

Air terjun Shulamit di Nahal David. Koordinat: 31°27′0″N 35°23′0″E / 31.45000°N 35.38333°E / 31.45000; 35.38333 Air terjun Daud (David falls), Ein Gedi. The Window Dry fall (Air terjun Jendela Kering), dengan pemandangan ke arah Ein Gedi dan Laut Mati, Israel. Ein Gedi (Ibrani: עין גדיcode: he is deprecated ; Arab: عين جديcode: ar is deprecated ; En-Gedi) adalah oasis yang terletak di sebelah barat Laut Mati, dekat dengan Masada dan goa Qumran. ...

 

Jill KellyJill Kelly, 2004LahirAdrianne D. Moore;[1]1 Februari 1971 (umur 53)Pomona, California, A.SNama lainJill Kellie, Calista Jammer, Jill Kelley, Adrian, Calista J., Calista Jay, Jill Kennedy, Jill Roberts, Seth Damian, Seth DamienTinggi5 ft 7 in (1,70 m)Berat114 pon (52 kg)Suami/istriCal Jammer14 Februari, 1993 - January 25, 1995 (His death)Julian6 Meu, 2000 - 2001 (cerai)Corey JordanSeptember 20, 2003 - Oktober 2004 (cerai) Jill Kelly (lahir ...

 

Kaktus pir berduri Buah Status konservasi Data Kurang (IUCN 3.1)[1] Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Plantae Divisi: Magnoliophyta Kelas: Magnoliopsida Ordo: Caryophyllales Famili: Cactaceae Genus: Opuntia Spesies: Opuntia ficus-indica(L.) Mill. Sinonim[2] Cactus decumanus Willd. Nopal Willd. Cactus ficus-indica L. Opuntia amyclaea Ten. Opuntia cordobensis Speg. Opuntia decumana (Willd.) Haw. Opuntia ficus-barbarica A.Berger Opuntia gymnocarpa F.A.C.Weber O...

Busenwurth Lambang kebesaranLetak Busenwurth di Dithmarschen NegaraJermanNegara bagianSchleswig-HolsteinKreisDithmarschen Municipal assoc.MitteldithmarschenSubdivisions3Pemerintahan • MayorHans Hermann VoßLuas • Total10,09 km2 (390 sq mi)Ketinggian3 m (10 ft)Populasi (2013-12-31)[1] • Total298 • Kepadatan0,30/km2 (0,76/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos25719Kode area telepon04857, 04859Pelat ...

 

Piala Raja Spanyol 2006–2007Negara SpanyolJumlah peserta83Juara bertahanEspanyolJuaraSevilla(gelar ke-4)Tempat keduaGetafeJumlah pertandingan112Jumlah gol252 (2.25 per pertandingan)Pencetak gol terbanyak Javier Saviola(F.C. Barcelona)(7 gol)← 2005–2006 2007–2008 → Piala Raja Spanyol 2006–2007 adalah edisi ke-103 dari penyelenggaraan Piala Raja Spanyol, turnamen sepak bola di Spanyol dengan sistem piala. Edisi ini dimenangkan oleh Sevilla setelah mengalahkan Getafe pada pertan...

 

Instalasi fondasi dalam untuk sebuah jembatan di Napa, California, Amerika Serikat. Fondasi dalam adalah jenis fondasi dibedakan dari fondasi dangkal dengan kedalaman mereka tertanam ke dalam tanah. Ada banyak alasan seorang insinyur geoteknik akan merekomendasikan fondasi dalam ke fondasi dangkal, tetapi beberapa alasan umum adalah beban desain yang sangat besar, tanah yang buruk pada kedalaman dangkal, atau kendala situs (seperti garis properti). Ada istilah yang berbeda digunakan untuk men...

New York City Subway station in Manhattan New York City Subway station in Manhattan, New York Lexington Avenue/51 Street ​​​ New York City Subway station complexLexington Avenue and 53rd Street plaza entranceStation statisticsAddressEast 53rd Street & Lexington AvenueNew York, NY 10022[1]BoroughManhattanLocaleMidtown ManhattanCoordinates40°45′25″N 73°58′19″W / 40.757075°N 73.971977°W / 40.757075; -73.971977DivisionA (...

 

Vous lisez un « article de qualité » labellisé en 2012. Hannibal traversant les Alpes à dos d'éléphant, Nicolas Poussin (1625-1626). Le passage des Alpes par Hannibal est une étape majeure de la marche vers l’Italie de l’armée d’Hannibal Barca, réalisée à la fin de l’année 218 av. J.-C., au début de la deuxième guerre punique déclenchée contre Rome. Ce périple précis s'étala sur quinze jours, pour approximativement deux cents kilomètres parcourus. La vo...

 

坐标:43°11′38″N 71°34′21″W / 43.1938516°N 71.5723953°W / 43.1938516; -71.5723953 此條目需要补充更多来源。 (2017年5月21日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:新罕布什尔州 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源...

爱德华·谢瓦尔德纳泽ედუარდ შევარდნაძე第2任格鲁吉亚總統任期1995年11月26日—2003年11月23日前任茲維亞德·加姆薩胡爾季阿继任米哈伊尔·萨卡什维利苏联外交部部长任期1985年7月2日—1990年12月20日总书记米哈伊尔·戈尔巴乔夫前任安德烈·葛罗米柯继任亚历山大·别斯梅尔特内赫 个人资料出生(1928-01-25)1928年1月25日苏联外高加索苏维埃联邦社会主义共和国古...

 

Feature of biological cell structure This article is about the cellular structure. For other uses, see Spindle (disambiguation). Micrograph showing condensed chromosomes in blue, kinetochores in pink, and microtubules in green during metaphase of mitosis In cell biology, the spindle apparatus is the cytoskeletal structure of eukaryotic cells that forms during cell division to separate sister chromatids between daughter cells. It is referred to as the mitotic spindle during mitosis, a process ...

 

  لمعانٍ أخرى، طالع مملكة بولندا (توضيح).   الجُمهُورِيَّة البُولندِيَّة Rzeczpospolita Polska  (بولندية) بولنداعلم بولندا بولنداشعار بولندا الشعار الوطني(بالإنجليزية: Move your imagination)‏  النشيد: نشِيد بُولندا الوطَنِي الأرض والسكان إحداثيات 52°N 19°E / 52°N 19°E / 5...

Para otros usos de este término, véase Paraguay (desambiguación). República del ParaguayParaguái Tavakuairetã  (guaraní)Bandera Escudo Lema: Paz y justicia(en guaraní: Py'aguapy ha tekojoja) Himno: Himno nacional del Paraguay(en guaraní: Tetã Paraguái Momorãhéi o Tetã Purahéi Guasu) ¿Problemas al reproducir este archivo? Capital(y ciudad más poblada) Asunción25°18′00″S 57°38′00″O / -25.3, -57.633333333333 Sede de gobierno Palacio de Lópe...

 

Ethnic group French Iraniansایرانیان فرانسهTotal populationResidents of France born in Iran:[1]9,715 non-French nationals8,661 French nationals(Statistics from 1999. May include non-Iranians.)LanguagesFrench, Persian(also Azerbaijani, Armenian, Kurdish, and others)ReligionShia Islam, irreligiousRelated ethnic groupsIranian diaspora Iranians in France include immigrants from Iran to France as well as their descendants of Iranian heritage or background. Iranians in France ...

 

Play by Timberlake Wertenbaker Our Country's GoodDramatic Publishing Co. edition, 1989Written byTimberlake WertenbakerDate premiered1988Place premieredRoyal Court TheatreLondon, UKOriginal languageEnglishSubjectBased on a true story of convicts rehearsing a playGenreDramaSetting18th century, Sydney, Australia Our Country's Good is a 1988 play written by British playwright Timberlake Wertenbaker, adapted from the Thomas Keneally novel The Playmaker. The story concerns a group of Royal Marines ...

Seconda CategoriaSport Calcio TipoClub FederazioneFIGC-LND-Comitati Provinciali Paese Italia OrganizzatoreLega Nazionale Dilettanti Aperturaagosto/settembre Chiusuramaggio/giugno Partecipanti2157 squadre in 150 gironi Formula150 gironi all'italiana con eventuali play-off e play-out Promozione inPrima Categoria Retrocessione inTerza Categoria Sito Internetwww.lnd.it StoriaFondazione1959 Modifica dati su Wikidata · Manuale La Seconda Categoria è il quinto livello dilettantistico del...

 

American baseball player (1940–2020) Baseball player Glenn BeckertBeckert in 1973Second basemanBorn: (1940-10-12)October 12, 1940Pittsburgh, Pennsylvania, U.S.Died: April 12, 2020(2020-04-12) (aged 79)Englewood, Florida, U.S.Batted: RightThrew: RightMLB debutApril 12, 1965, for the Chicago CubsLast MLB appearanceApril 27, 1975, for the San Diego PadresMLB statisticsBatting average.283Home runs22Runs batted in360 Teams Chicago Cubs (1965–1973) San Diego P...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مايو 2023) هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق م...

Process of offering goods or services up for bids Auctioneer redirects here. For the DC Comics supervillain, see Auctioneer (comics). Part of a series onAuctions Types All-pay Chinese Bidding fee Dollar Amsterdam Anglo-Dutch Barter double Best/not best Brazilian Calcutta Candle Click-box bidding Combinatorial Common value Deferred-acceptance Discriminatory price Double Dutch English Forward French Generalized first-price Generalized second-price Japanese Knapsack Multi-attribute Multiunit No-...

 

بيترو بيفيلاكوا معلومات شخصية الميلاد 22 فبراير 1997 (27 سنة)[1]  ثيين  الجنسية إيطاليا  الحياة العملية الفرق ويلير تريستينا-سيل إيطاليا  [لغات أخرى]‏ (2018–2021)إيولو كوميت  [لغات أخرى]‏ (2022–2023)  المهنة دراج  نوع السباق سباقات الدراجات على الطريق  ...