Pyroelectricity

Internals of a pyroelectric sensor

Pyroelectricity (from Greek: pyr (πυρ), "fire" and electricity) is a property of certain crystals which are naturally electrically polarized and as a result contain large electric fields.[1] Pyroelectricity can be described as the ability of certain materials to generate a temporary voltage when they are heated or cooled.[2][3] The change in temperature modifies the positions of the atoms slightly within the crystal structure, so that the polarization of the material changes. This polarization change gives rise to a voltage across the crystal. If the temperature stays constant at its new value, the pyroelectric voltage gradually disappears due to leakage current. The leakage can be due to electrons moving through the crystal, ions moving through the air, or current leaking through a voltmeter attached across the crystal.[3][4]

Explanation

Pyroelectric charge in minerals develops on the opposite faces of asymmetric crystals. The direction in which the propagation of the charge tends is usually constant throughout a pyroelectric material, but, in some materials, this direction can be changed by a nearby electric field. These materials are said to exhibit ferroelectricity.

All known pyroelectric materials are also piezoelectric. Despite being pyroelectric, novel materials such as boron aluminum nitride (BAlN) and boron gallium nitride (BGaN) have zero piezoelectric response for strain along the c-axis at certain compositions,[5] the two properties being closely related. However, note that some piezoelectric materials have a crystal symmetry that does not allow pyroelectricity.

Pyroelectric materials are mostly hard and crystals; however, soft pyroelectricity can be achieved by using electrets.[6]

Pyroelectricity is measured as the change in net polarization (a vector) proportional to a change in temperature. The total pyroelectric coefficient measured at constant stress is the sum of the pyroelectric coefficients at constant strain (primary pyroelectric effect) and the piezoelectric contribution from thermal expansion (secondary pyroelectric effect). Under normal circumstances, even polar materials do not display a net dipole moment. As a consequence, there are no electric dipole equivalents of bar magnets because the intrinsic dipole moment is neutralized by "free" electric charge that builds up on the surface by internal conduction or from the ambient atmosphere. Polar crystals only reveal their nature when perturbed in some fashion that momentarily upsets the balance with the compensating surface charge.

Spontaneous polarization is temperature dependent, so a good perturbation probe is a change in temperature which induces a flow of charge to and from the surfaces. This is the pyroelectric effect. All polar crystals are pyroelectric, so the 10 polar crystal classes are sometimes referred to as the pyroelectric classes. Pyroelectric materials can be used as infrared and millimeter wavelength radiation detectors.

An electret is the electrical equivalent of a permanent magnet.

Mathematical description

The pyroelectric coefficient may be described as the change in the spontaneous polarization vector with temperature:[7] where pi (Cm−2K−1) is the vector for the pyroelectric coefficient.

History

The first record of the pyroelectric effect was made in 1707 by Johann Georg Schmidt, who noted that the "[hot] tourmaline could attract the ashes from the warm or burning coals, as the magnet does iron, but also repelling them again [after the contact]".[8] In 1717 Louis Lemery noticed, as Schmidt had, that small scraps of non-conducting material were first attracted to tourmaline, but then repelled by it once they contacted the stone.[9] In 1747 Linnaeus first related the phenomenon to electricity (he called tourmaline Lapidem Electricum, "the electric stone"),[10] although this was not proven until 1756 by Franz Ulrich Theodor Aepinus.[11]

Research into pyroelectricity became more sophisticated in the 19th century. In 1824 Sir David Brewster gave the effect the name it has today.[12] Both William Thomson in 1878[13] and Woldemar Voigt in 1897[14] helped develop a theory for the processes behind pyroelectricity. Pierre Curie and his brother, Jacques Curie, studied pyroelectricity in the 1880s, leading to their discovery of some of the mechanisms behind piezoelectricity.[15]

It is mistakenly attributed to Theophrastus (c. 314 BC) the first record of pyroelectricity. The misconception arose soon after the discovery of the pyroelectric properties of tourmaline, which made mineralogists of the time associate the legendary stone Lyngurium with it.[16] Lyngurium is described in the work of Theophrastus as being similar to amber, without specifying any pyroelectric properties.[17]

Crystal classes

All crystal structures belong to one of thirty-two crystal classes based on the number of rotational axes and reflection planes they possess that leave the crystal structure unchanged (point groups). Of the thirty-two crystal classes, twenty-one are non-centrosymmetric (not having a centre of symmetry). Of these twenty-one, twenty exhibit direct piezoelectricity, the remaining one being the cubic class 432. Ten of these twenty piezoelectric classes are polar, i.e., they possess a spontaneous polarization, having a dipole in their unit cell, and exhibit pyroelectricity. If this dipole can be reversed by the application of an electric field, the material is said to be ferroelectric. Any dielectric material develops a dielectric polarization (electrostatics) when an electric field is applied, but a substance which has such a natural charge separation even in the absence of a field is called a polar material. Whether or not a material is polar is determined solely by its crystal structure. Only 10 of the 32 point groups are polar. All polar crystals are pyroelectric, so the ten polar crystal classes are sometimes referred to as the pyroelectric classes.

Piezoelectric crystal classes: 1, 2, m, 222, mm2, 4, -4, 422, 4mm, -42m, 3, 32, 3m, 6, -6, 622, 6mm, -62m, 23, -43m

Pyroelectric: 1, 2, m, mm2, 3, 3m, 4, 4mm, 6, 6mm

Two effects which are closely related to pyroelectricity are ferroelectricity and piezoelectricity. Normally materials are very nearly electrically neutral on the macroscopic level. However, the positive and negative charges which make up the material are not necessarily distributed in a symmetric manner. If the sum of charge times distance for all elements of the basic cell does not equal zero the cell will have an electric dipole moment (a vector quantity). The dipole moment per unit volume is defined as the dielectric polarization. If this dipole moment changes with the effect of applied temperature changes, applied electric field, or applied pressure, the material is pyroelectric, ferroelectric, or piezoelectric, respectively.

The ferroelectric effect is exhibited by materials which possess an electric polarization in the absence of an externally applied electric field such that the polarization can be reversed if the electric field is reversed. Since all ferroelectric materials exhibit a spontaneous polarization, all ferroelectric materials are also pyroelectric (but not all pyroelectric materials are ferroelectric).

The piezoelectric effect is exhibited by crystals (such as quartz or ceramic) for which an electric voltage across the material appears when pressure is applied. Similar to pyroelectric effect, the phenomenon is due to the asymmetric structure of the crystals that allows ions to move more easily along one axis than the others. As pressure is applied, each side of the crystal takes on an opposite charge, resulting in a voltage drop across the crystal.

Pyroelectricity should not be confused with thermoelectricity: In a typical demonstration of pyroelectricity, the whole crystal is changed from one temperature to another, and the result is a temporary voltage across the crystal. In a typical demonstration of thermoelectricity, one part of the device is kept at one temperature and the other part at a different temperature, and the result is a permanent voltage across the device as long as there is a temperature difference. Both effects convert temperature change to electrical potential, but the pyroelectric effect converts temperature change over time into electrical potential, while the thermoelectric effect converts temperature change with position into electrical potential.

Pyroelectric materials

Although artificial pyroelectric materials have been engineered, the effect was first discovered in minerals such as tourmaline. The pyroelectric effect is also present in bone and tendon.[18]

The most important example is gallium nitride, a semiconductor.[19] The large electric fields in this material are detrimental in light emitting diodes (LEDs), but useful for the production of power transistors.[citation needed]

Progress has been made in creating artificial pyroelectric materials, usually in the form of a thin film, using gallium nitride (GaN), caesium nitrate (CsNO3), polyvinyl fluorides, derivatives of phenylpyridine, and cobalt phthalocyanine. Lithium tantalate (LiTaO3) is a crystal exhibiting both piezoelectric and pyroelectric properties, which has been used to create small-scale nuclear fusion ("pyroelectric fusion").[20] Recently, pyroelectric and piezoelectric properties have been discovered in doped hafnium oxide (HfO2), which is a standard material in CMOS manufacturing.[21]

Applications

Heat sensors

Very small changes in temperature can produce a pyroelectric potential. Passive infrared sensors are often designed around pyroelectric materials, as the heat of a human or animal from several feet away is enough to generate a voltage.[22]

Power generation

A pyroelectric can be repeatedly heated and cooled (analogously to a heat engine) to generate usable electrical power. An example of a heat engine is the movement of the pistons in an internal combustion engine like that found in a gasoline powered automobile.[23]

One group calculated that a pyroelectric in an Ericsson cycle could reach 50% of Carnot efficiency,[24][25] while a different study found a material that could, in theory, reach 84-92% of Carnot efficiency[26] (these efficiency values are for the pyroelectric itself, ignoring losses from heating and cooling the substrate, other heat-transfer losses, and all other losses elsewhere in the system).

Possible advantages of pyroelectric generators for generating electricity (as compared to the conventional heat engine plus electrical generator) include:

Although a few patents have been filed for such a device,[29] such generators do not appear to be anywhere close to commercialization.

Nuclear fusion

Pyroelectric materials have been used to generate large electric fields necessary to steer deuterium ions in a nuclear fusion process. This is known as pyroelectric fusion.

See also

References

  1. ^ Ashcroft, N. W. & Mermin, N. D. Solid State Physics. (Cengage Learning, 1976).
  2. ^ Charles Kittel-8th Edition. 2016. Introduction to Solid State Physics.
  3. ^ a b Webster, John G (1999). The measurement, instrumentation, and sensors handbook. CRC Press. pp. 32–113. ISBN 978-0-8493-8347-2.
  4. ^ In this article, the term "voltage" is used in the everyday sense, i.e. what a voltmeter measures. This is actually the electrochemical potential, not the electrostatic potential (Galvani potential).
  5. ^ Liu, Kaikai (2017). "Wurtzite BAlN and BGaN alloys for heterointerface polarization engineering". Applied Physics Letters. 111 (22): 222106. Bibcode:2017ApPhL.111v2106L. doi:10.1063/1.5008451. hdl:10754/626289.
  6. ^ Darbaniyan, F.; Sharma, P. (2018). "Designing Soft Pyroelectric and Electrocaloric Materials Using Electrets". Soft Matter. 15 (2): 262–277. Bibcode:2019SMat...15..262D. doi:10.1039/C8SM02003E. PMID 30543261. S2CID 56145736.
  7. ^ Damjanovic, Dragan (1998). "Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics". Rep. Prog. Phys. 61 (9): 1267–1324. Bibcode:1998RPPh...61.1267D. doi:10.1088/0034-4885/61/9/002. S2CID 250873563.
  8. ^ Johann Georg Schmidt, Curiöse Speculationes bey Schalflosen Nächten [Curious Speculations During Sleepless Nights] (Chemnitz and Leipzig (Germany): Conrad Stössen, 1707), pages 269-270. An English translation of the relevant passage appears in: Sidney B. Lang, Sourcebook of Pyroelectricity, vol. 2 (New York, New York: Gordon and Breach, 1974), page 96.
  9. ^ "Diverse observations de la physique generale," Histoire de l'Académie des Sciences (1717); see pages 7-8.
  10. ^ Carl von Linné ("Linnaeus"), Flora Zeylanica: Sistens Plantas Indicas Zeylonae Insulae [The Flora of Ceylon: consisting of Indian plants of the island of Ceylon] (Stockholm ("Holmiae"), Sweden: Laurentii Salvii, 1747), page 8. A translation of the relevant passage appears in Lang (1974), page 103.
  11. ^ Aepinus (1756) "Memoire concernant quelques nouvelles experiences électriques remarquables" [Memoir concerning some remarkable new electrical experiments], Histoire de l'Académie royale des sciences et des belles lettres (Berlin), vol. 12, pages 105-121.
  12. ^ Brewster, David (1824). "Observations of the pyro-electricity of minerals". The Edinburgh Journal of Science. 1: 208–215.
  13. ^ William Thomson (1878) "On the thermoelastic, thermomagnetic and pyroelectric properties of matter," Philosophical Magazine, series 5, vol. 5, pages 4 - 26.
  14. ^ W. Voigt (1897) "Versuch zur Bestimmung des wahren specifischen electrischen Momentes eines Turmalins" (Experiment to determine the true specific electric moment of a tourmaline), Annalen der Physik, vol. 60, pages 368 - 375.
  15. ^ Jacques Curie & Pierre Curie, "Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées", Bulletin de la Société Minéralogique de France, vol. 3 (4), 90-93, 1880.
  16. ^ Earle R. Caley and John F.C. Richards, Theophrastus: On Stones (Columbus, Ohio: Ohio State University, 1956), page 110, line 12 of the commentary: "Watson identifies the lyngounon of Theophrastus with tourmaline, but evidently his opinion is partly based on the attractive properties of heated tourmaline which had recently been discovered. This identification is repeated by various later writers. For example, Dana states that lyncurium is supposed to be the ancient name for common tourmaline. However, the absence of tourmaline among surviving examples of ancient gems is clearly against this view."
  17. ^ Earle R. Caley and John F.C. Richards, Theophrastus: On Stones (Columbus, Ohio: Ohio State University, 1956), page 51, paragraph 28 of the original text: "It [smaragdos] is remarkable in its powers, and so is the lyngourion [i.e., lynx-urine stone] … . It has the power of attraction, just as amber has, and some say that it not only attracts straws and bits of wood, but also copper and iron, if the pieces are thin, as Diokles used to explain."
  18. ^ LANG, SIDNEY B. (November 1966). "Pyroelectric Effect in Bone and Tendon". Nature. 212 (5063): 704–705. Bibcode:1966Natur.212..704L. doi:10.1038/212704a0. ISSN 0028-0836. S2CID 4205482.
  19. ^ Gallium Nitride (GaN): Physics, Devices, and Technology.” 2015. CRC Press. October 16
  20. ^ Naranjo, B.; Gimzewski, J.K.; Putterman, S. (2005). "Observation of nuclear fusion driven by a pyroelectric crystal". Nature. 434 (7037): 1115–1117. Bibcode:2005Natur.434.1115N. doi:10.1038/nature03575. ISSN 0028-0836. PMID 15858570. S2CID 4407334.
  21. ^ Mart, C.; Kämpfe, T.; Hoffmann, R.; Eßlinger, S.; Kirbach, S.; Kühnel, K.; Czernohorsky, M.; Eng, L.M.; Weinreich, W. (2020). "Piezoelectric Response of Polycrystalline Silicon-Doped Hafnium Oxide Thin Films Determined by Rapid Temperature Cycles". Advanced Electronic Materials. 6 (3): 1901015. doi:10.1002/aelm.201901015.
  22. ^ "Target Classification Using Pyroelectric Infrared Sensors in Unattended Wild Ground Environment". International Journal on Smart Sensing and Intelligent Systems. 6 (5).
  23. ^ "Heat engine - Energy Education". energyeducation.ca. Retrieved 2023-09-07.
  24. ^ Sebald, Gael; Pruvost, Sebastien; Guyomar, Daniel (2008). "Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic" (PDF). Smart Materials and Structures. 17 (1): 015012. Bibcode:2008SMaS...17a5012S. doi:10.1088/0964-1726/17/01/015012. S2CID 108894876.
  25. ^ Sebald, Gael; Guyomar, Daniel; Agbossou, Amen (2009). "On thermoelectric and pyroelectric energy harvesting". Smart Materials and Structures. 18 (12): 125006. Bibcode:2009SMaS...18l5006S. doi:10.1088/0964-1726/18/12/125006. S2CID 53378208.
  26. ^ Olsen, Randall B.; Evans, Diane (1983). "Pyroelectric energy conversion: Hysteresis loss and temperature sensitivity of a ferroelectric material". Journal of Applied Physics. 54 (10): 5941–5944. Bibcode:1983JAP....54.5941O. doi:10.1063/1.331769.
  27. ^ Pandya, Shishir; Velarde, Gabriel; Zhang, Lei; Wilbur, Joshua D.; Smith, Andrew; Hanrahan, Brendan; Dames, Chris; Martin, Lane W. (2019-06-07). "New approach to waste-heat energy harvesting: pyroelectric energy conversion". NPG Asia Materials. 11 (1): 1–5. doi:10.1038/s41427-019-0125-y. ISSN 1884-4057.
  28. ^ Kouchachvili, L; Ikura, M (2007). "Pyroelectric conversion—Effects of P(VDF–TrFE) preconditioning on power conversion". Journal of Electrostatics. 65 (3): 182–188. doi:10.1016/j.elstat.2006.07.014.
  29. ^ For example: US Patent 4647836, US Patent 6528898, US Patent 5644184

Read other articles:

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah w...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) منتخب تونس تحت 20 سنة لكرة القدم للسيدات معلومات عامة بلد الرياضة تونس الفئة كرة قدم تحت 20 سنة للسيدات &#...

 

 

Partai Kedaulatan Bangsa Indonesia Baru Ketua umumYenny WahidSekretaris JenderalImron Rosyadi Hamid (2012–2014)Dibentuk23 September 2002(sebagai Partai Perhimpunan Indonesia Baru)Kantor pusatDKI JakartaIdeologiPancasilaSosialismeKursi di DPR-Politik IndonesiaPartai politikPemilihan umum Partai Kedaulatan Bangsa Indonesia Baru (disingkat PKBIB), sebelumnya bernama Partai Perhimpunan Indonesia Baru di 2004 berubah jadi Partai Perjuangan Indonesia Baru (disingkat PPIB) di 2009, adalah salah sa...

H.HidayatullahS.E. Anggota Dewan Perwakilan Rakyat Republik IndonesiaPetahanaMulai menjabat 1 Oktober 2019Daerah pemilihanSumatera Utara IAnggota DPRD Sumatera UtaraMasa jabatan2004–2014Daerah pemilihanSumatera Utara III[1] Informasi pribadiLahir(1961-10-24)24 Oktober 1961MalaysiaKebangsaan IndonesiaPartai politikPartai Keadilan SejahteraSuami/istriHamidahAnak6Alma materUniversitas Sumatera UtaraPekerjaanPolitikusSunting kotak info • L • B H. Hidayatullah, SE (lahi...

 

 

Tadibast IIIIbunda Dewa, Istri RajaAegis kecil dengan nama Tadibast dan putranya Osorkon, di Museum LouvrePasangandiduga Shoshenq VAnakOsorkon IVnama Mesir ḥmt-nswt Tȝ-di-BȝsttIstri Raja Tadibast(et)Agamaagama Mesir Kuno Tadibast (atau Tadibastet) III merupakan seorang permaisuri Mesir Kuno selama akhir Periode Menengah Ketiga Mesir, pada sekitar paruh kedua abad ke-8 SM. Identifikasi Ia dikenal hanya oleh elektrum Aigis dari Sekhmet, Bubastis dan sekarang dipajang di Museum Louvre. Pada ...

 

 

Spanish racing cyclist David BlancoPersonal informationFull nameDavid Blanco RodríguezBorn (1975-03-03) 3 March 1975 (age 49)Bern, SwitzerlandTeam informationCurrent teamRetiredDisciplineRoadRoleRiderRider typeAll-rounderProfessional teams2000–2001Paredes Rota dos Móveis–Tintas VIP2002ASC–Vila do Conde2003Porta da Ravessa–Tavira2004–2006Comunidad Valenciana–Kelme2007–2010Duja–Tavira2011Geox–TMC2012Efapel–Glassdrive[1] In this Spanish name, the...

  هذه المقالة عن مادة الكرتون. لمعانٍ أخرى، طالع كرتون (توضيح). الكرتون (بالإنجليزية: Cardboard)‏ هو الورق يصنع من الألياف السميكة، وله استخدامات عديدة منها في تصنيع علب الكرتون.[1][2][3] استخدامات الكرتون علبة كرتونية علبة الكرتون هي نوع من الصناديق أو العلب، الم�...

 

 

Artikel ini berisi tentang kardinal Katolik Roma. Untuk perwira militer, lihat Nguyễn Văn Nhơn. Pada nama Vietnam ini, nama keluarga-nya adalah Nguyễn. Menurut kebiasaan Vietnam, tokoh ini dipanggil dengan nama pemberian-nya Nhơn. Yang MuliaPetrus Nguyễn Văn NhơnPhêrô Nguyễn Văn NhơnKardinal, Uskup Agung Emeritus Hanoi TakhtaHanoiAwal masa jabatan13 Mei 2010Masa jabatan berakhir17 November 2018PendahuluYusuf Ngô Quang KiệtPenerusJoseph Vu Văn ThiênJabatan lainUskup �...

 

 

Palais des Blachernesτὸ ἐν Βλαχέρναις ΠαλάτιονVue depuis l'intérieur des murs de la ville d'une partie du palais byzantin des Blachernes.PrésentationType PalaisCivilisation Empire byzantinDestination initiale Résidence des basileusStyle Architecture byzantineLocalisationPays Empire byzantinCommune ConstantinopleEmplacement IstanbulCoordonnées 41° 02′ 02″ N, 28° 56′ 25″ E Géolocalisation sur la carte : Turquie Géolocali...

Main articles: Rock festival and Heavy metal music List of heavy metal festivalsBrutal Assault 2012General InformationRelated genresHeavy metal, punk rock, rockLocationEurope and United States (origin)Worldwide (current)Related eventsPunk rock festival, rock festivalvte This is an incomplete list of heavy metal festivals. The genre of heavy metal (or simply metal) is a subgenre of rock music that developed in the late 1960s and early 1970s, largely in the United States and the United Kingdom...

 

 

Engineering college in Makiyivka, Ukraine Donbas National Academy of Civil Engineering and ArchitectureДонбаська національна академія будівництва і архітектури Donbasʹka natsionalʹna akademiya budivnytstva i arkhitekturyMottoНавчаючи – навчаємосьMotto in EnglishTeaching – LearningTypeEngineering collegeRectorVasyl Kravets[1]Students8,000+LocationKramatorsk[2], Donetsk Oblast, UkraineWebsitedonnaba....

 

 

Platelet-activating factor Names Systematic IUPAC name (2R)-2-(Acetyloxy)-3-(hexadecyloxy)propyl 2-(trimethylazaniumyl)ethyl phosphate Identifiers CAS Number 74389-68-7 Y 3D model (JSmol) Interactive image ChEBI CHEBI:44811 N ChemSpider 97241 N IUPHAR/BPS 18331831 MeSH Platelet+Activating+Factor PubChem CID 108156 UNII 42EWD89I80 Y CompTox Dashboard (EPA) DTXSID00225377 InChI InChI=1S/C26H54NO7P/c1-6-7-8-9-10-11-12-13-14-15-16-17-18-19-21-31-23-26(34-25(2)28)24-33-35(29,3...

Эта статья — о религиозном празднике. О точке начала отсчёта календаря см. От Рождества Христова. У этого термина существуют и другие значения, см. Рождество Христово (значения). Запрос «Рождество» перенаправляется сюда; см. также другие значения. Эту страниц...

 

 

Yakima redirects here. For other uses, see Yakima (disambiguation). City in Washington, United StatesYakima, WashingtonCityYakima as viewed from Lookout Point SealNickname(s): The Palm Springs of Washington; The Heart of Central WashingtonLocation of Yakima in Yakima CountyYakima, WashingtonLocation in the United StatesCoordinates: 46°36′07″N 120°30′28″W / 46.60194°N 120.50778°W / 46.60194; -120.50778CountryUnited StatesStateWashingtonCountyYakimaIncor...

 

 

Art museum in Nice, FranceMusée des Beaux-Arts de NiceLocation within NiceEstablished1928LocationNice, FranceTypeArt museum The Musée des Beaux-Arts de Nice[1] in Nice, France at 33 av. des Baumettes was built in the former private mansion built in 1878 by the Russian Princess, Elizaveta Vasilievna Kochubey [ru]. Named for the artist Jules Chéret who lived and worked in Nice during his final years, the museum opened as the Palais des Arts Jules Chéret on 7 January 192...

History of the feminist movement in the UK Part of a series onFeminism History Feminist history History of feminism Women's history American British Canadian German Waves First Second Third Fourth Timelines Women's suffrage Muslim countries US Other women's rights Women's suffrage by country Austria Australia Canada Colombia India Japan Kuwait Liechtenstein New Zealand Spain Second Republic Francoist Switzerland United Kingdom Cayman Islands Wales United States states Intersectional variants ...

 

 

Brand of flashlight This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2013) (Learn how and when to remove this message) Maglite 2 D cell flashlight Maglite (also spelled Mag-Lite, stylized as MAG-LITE) is a brand of flashlight manufactured in the United States by Mag Instrument, Inc. located in Ontario, California, and founded by Anthony Maglica. It was i...

 

 

Deliberate removal of a person's healthy teeth This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tooth ablation – news · newspapers · books · scholar · JSTOR (September 2023) (Learn how and when to remove this message) Not to be confused with Dental avulsion, which is caused by dental trauma. A BaTonga woman w...

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2023) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إ�...

 

 

Process of revealing one's sexual orientation or other attributes Come out redirects here. For other uses, see Come out (disambiguation) and Coming out (disambiguation). LGBT movement – 2017 by Pedro Ribeiro Simões Part of a series onLGBT topics       LesbianGayBisexualTransgender Sexual orientation and gender Aromanticism Asexuality Gray asexuality Biology Bisexuality Pansexuality Demographics Environment Gender fluidity Gender identity Gender role Gender var...