Pulsatile flow

In fluid dynamics, a flow with periodic variations is known as pulsatile flow, or as Womersley flow. The flow profiles was first derived by John R. Womersley (1907–1958) in his work with blood flow in arteries.[1] The cardiovascular system of chordate animals is a very good example where pulsatile flow is found, but pulsatile flow is also observed in engines and hydraulic systems, as a result of rotating mechanisms pumping the fluid.

Equation

Four pulsatile flow profiles in a straight tube are shown. The first graph (in blue) shows the pressure gradient as a cosine function, and the other graphs (in red) show dimensionless velocity profiles for different Womersley numbers.

The pulsatile flow profile is given in a straight pipe by

where:

u is the longitudinal flow velocity,
r is the radial coordinate,
t is time,
α is the dimensionless Womersley number,
ω is the angular frequency of the first harmonic of a Fourier series of an oscillatory pressure gradient,
n are the natural numbers,
P'n is the pressure gradient magnitude for the frequency ,
ρ is the fluid density,
μ is the dynamic viscosity,
R is the pipe radius,
J0(·) is the Bessel function of first kind and order zero,
i is the imaginary number, and
Re{·} is the real part of a complex number.

Properties

Womersley number

The pulsatile flow profile changes its shape depending on the Womersley number

For , viscous forces dominate the flow, and the pulse is considered quasi-static with a parabolic profile. For , the inertial forces are dominant in the central core, whereas viscous forces dominate near the boundary layer. Thus, the velocity profile gets flattened, and phase between the pressure and velocity waves gets shifted towards the core.[citation needed]

Function limits

Lower limit

The Bessel function at its lower limit becomes[2]

which converges to the Hagen-Poiseuille flow profile for steady flow for

or to a quasi-static pulse with parabolic profile when

In this case, the function is real, because the pressure and velocity waves are in phase.

Upper limit

The Bessel function at its upper limit becomes[2]

which converges to

This is highly reminiscent of the Stokes layer on an oscillating flat plate, or the skin-depth penetration of an alternating magnetic field into an electrical conductor. On the surface , but the exponential term becomes negligible once becomes large, the velocity profile becomes almost constant and independent of the viscosity. Thus, the flow simply oscillates as a plug profile in time according to the pressure gradient,

However, close to the walls, in a layer of thickness , the velocity adjusts rapidly to zero. Furthermore, the phase of the time oscillation varies quickly with position across the layer. The exponential decay of the higher frequencies is faster.

Derivation

For deriving the analytical solution of this non-stationary flow velocity profile, the following assumptions are taken:[3][4]

Thus, the Navier-Stokes equation and the continuity equation are simplified as

and

respectively. The pressure gradient driving the pulsatile flow is decomposed in Fourier series,

where is the imaginary number, is the angular frequency of the first harmonic (i.e., ), and are the amplitudes of each harmonic . Note that, (standing for ) is the steady-state pressure gradient, whose sign is opposed to the steady-state velocity (i.e., a negative pressure gradient yields positive flow). Similarly, the velocity profile is also decomposed in Fourier series in phase with the pressure gradient, because the fluid is incompressible,

where are the amplitudes of each harmonic of the periodic function, and the steady component () is simply Poiseuille flow

Thus, the Navier-Stokes equation for each harmonic reads as

With the boundary conditions satisfied, the general solution of this ordinary differential equation for the oscillatory part () is

where is the Bessel function of first kind and order zero, is the Bessel function of second kind and order zero, and are arbitrary constants, and is the dimensionless Womersley number. The axisymmetric boundary condition () is applied to show that for the derivative of above equation to be valid, as the derivatives and approach infinity. Next, the wall non-slip boundary condition () yields . Hence, the amplitudes of the velocity profile of the harmonic becomes

where is used for simplification. The velocity profile itself is obtained by taking the real part of the complex function resulted from the summation of all harmonics of the pulse,

Flow rate

Flow rate is obtained by integrating the velocity field on the cross-section. Since,

then

Velocity profile

Scaled velocity profiles of pulsatile flow are compared according to Womersley number.

To compare the shape of the velocity profile, it can be assumed that

where

is the shape function.[5] It is important to notice that this formulation ignores the inertial effects. The velocity profile approximates a parabolic profile or a plug profile, for low or high Womersley numbers, respectively.

Wall shear stress

For straight pipes, wall shear stress is

The derivative of a Bessel function is

Hence,

Centre line velocity

If the pressure gradient is not measured, it can still be obtained by measuring the velocity at the centre line. The measured velocity has only the real part of the full expression in the form of

Noting that , the full physical expression becomes

at the centre line. The measured velocity is compared with the full expression by applying some properties of complex number. For any product of complex numbers (), the amplitude and phase have the relations and , respectively. Hence,

and

which finally yield

See also

References

  1. ^ Womersley, J.R. (March 1955). "Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known". J. Physiol. 127 (3): 553–563. doi:10.1113/jphysiol.1955.sp005276. PMC 1365740. PMID 14368548.
  2. ^ a b Mestel, Jonathan (March 2009). "Pulsatile flow in a long straight artery" (PDF). Imperial College London. Retrieved 6 January 2017. Bio Fluid Mechanics: Lecture 14
  3. ^ Fung, Y. C. (1990). Biomechanics – Motion, flow, stress and growth. New York (USA): Springer-Verlag. p. 569. ISBN 9780387971247.
  4. ^ Nield, D.A.; Kuznetsov, A.V. (2007). "Forced convection with laminar pulsating flow in a channel or tube". International Journal of Thermal Sciences. 46 (6): 551–560. Bibcode:2007IJTS...46..551N. doi:10.1016/j.ijthermalsci.2006.07.011.
  5. ^ San, Omer; Staples, Anne E (2012). "An improved model for reduced-order physiological fluid flows". Journal of Mechanics in Medicine and Biology. 12 (3): 125–152. arXiv:1212.0188. doi:10.1142/S0219519411004666. S2CID 118525588.

Read other articles:

CITIC Plaza中信广场Nama lainSky Central PlazaChina International Trust & Investment PlazaInformasi umumStatusRampungJenisPerkantoranLokasi33 Zhongshan 3 RoadGuangzhou, Guangdong, TiongkokKoordinat23°08′40″N 113°19′10″E / 23.14444°N 113.31944°E / 23.14444; 113.31944Koordinat: 23°08′40″N 113°19′10″E / 23.14444°N 113.31944°E / 23.14444; 113.31944Mulai dibangun1993Rampung1996TinggiArsitektural3.902 m (12.802 ...

 

Sumber referensi dari artikel ini belum dipastikan dan mungkin isinya tidak benar. Mohon periksa, kembangkan artikel ini, dan tambahkan sumber yang benar pada bagian yang diperlukan. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Waringin Sari TimurPekonNegara IndonesiaProvinsiLampungKabupatenPringsewuKecamatanAdiluwihLuas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Untuk kegunaan lain, lihat Waringin Sari (disambiguasi). Waringin Sari Timur adalah pekon yan...

 

Pomme de terre infectée par le mildiou (Phytophthora infestans) Tumeur sur tronc de platane La pathologie végétale, ou phytopathologie ou phytiatrie, est la science qui étudie les maladies des plantes, surtout des plantes cultivées. La distinction entre une maladie et un problème d'ordre physiologique n'est pas toujours facile à établir. À la fin de cet article est placée une énumération de problèmes physiologiques pouvant être confondus avec des maladies. Les maladies des plant...

Johannes ThedensProtret Johannes Thedens ketika menjadi Gubernur Jenderal Hindia Belanda. Gubernur Jenderal Hindia Belanda ke-26Masa jabatan6 November 1741 – 28 Mei 1743 PendahuluAdriaan ValckenierPenggantiGustaaf Willem baron van Imhoff Informasi pribadiLahir1680Friedrichstadt, Kadipaten SchleswigMeninggal19 Maret 1748 (usia 68 tahun) Batavia, Hindia BelandaSunting kotak info • L • B Johannes Thedens (lahir di Friedrichstadt, Kadipaten Schleswig, 1680 - meninggal di ...

 

Former American hockey team Philadelphia PhantomsCityPhiladelphia, PennsylvaniaLeagueAmerican Hockey LeagueOperated1996–2009Home arenaWachovia SpectrumWachovia CenterColorsBlack, purple, orange, white       AffiliatePhiladelphia FlyersFranchise history1996–2009Philadelphia Phantoms2009–2014Adirondack Phantoms2014–presentLehigh Valley PhantomsChampionshipsRegular season titles2 (1996–97, 1997–98)Division titles4 (1996–97, 1997–98, 1998–99, 2003–04)Confer...

 

Chemical compound RelacorilantClinical dataOther namesCORT-125134Routes ofadministrationBy mouthDrug classAntiglucocorticoidIdentifiers IUPAC name [(4aR)-1-(4-Fluorophenyl)-6-(1-methylpyrazol-4-yl)sulfonyl-4,5,7,8-tetrahydropyrazolo[3,4-g]isoquinolin-4a-yl]-[4-(trifluoromethyl)pyridin-2-yl]methanone CAS Number1496510-51-0PubChem CID73051463ChemSpider57617720UNII2158753C7EKEGGD11336Chemical and physical dataFormulaC27H22F4N6O3SMolar mass586.57 g·mol−13D model (JSmol)Interactive image S...

PS BPD JatengNama lengkapPersatuan Sepak Bola Bank Pembangunan Daerah Jawa TengahJulukanKepodang / The Blue ForceStadionStadion JatidiriSemarang, Jawa Tengah, Indonesia(Kapasitas: 21.000)PemilikBPD JatengKetua UmumMuhammad IsmailPelatihSungkowo SudiartoLigaDivisi Utama Indonesia1994–95Peringkat 14 PS BPD Jateng singkatan dari (Persatuan Sepak bola Bank Pembangunan Daerah Jawa Tengah) merupakan klub yang didirikan untuk menjadi wakil Jawa tengah di kompetisi Galatama. PS BPD Jateng masih ber...

 

Secretary-General of the UN from 1997 to 2006 BusumuruKofi AnnanAnnan in 20127th Secretary-General of the United NationsIn office1 January 1997 – 31 December 2006DeputyLouise FréchetteMark Malloch BrownPreceded byBoutros Boutros-GhaliSucceeded byBan Ki-moonUN and Arab League Envoy to SyriaIn office23 February 2012 – 31 August 2012Secretary-GeneralBan Ki-moon (UN)Nabil Elaraby (League)Preceded byPosition establishedSucceeded byLakhdar BrahimiUnder-Secretary-General for P...

 

Pour les articles homonymes, voir Mogol. Ne doit pas être confondu avec Empire mongol. Empire mogholشاهانِ مغولسلطنة الهندية 21 avril 1526 – 21 septembre 1857(331 ans et 5 mois)Drapeau présumé de l'empire moghol Emblème présumé Étendue de l'Empire moghol à l'échelle mondiale, superposé aux frontières actuelles.Informations générales Statut Monarchie absolue Capitale Agra (1526–1571)Fatehpur-Sikri (1571–1585/1586)Lahore (1586–1598...

National Highway in North East India National Highway 713AMap of National Highway 713A in redRoute informationLength35 km (22 mi)Major junctionsSouth endHoj, Arunachal PradeshNorth endPappu, Arunachal Pradesh LocationCountryIndiaStatesArunachal Pradesh Highway system Roads in India Expressways National State Asian ← NH 13→ NH 415 National Highway 713A (NH 713A) is a National Highway in North East India that connects Hoj and Pappu in Arunachal Pradesh.[1] S...

 

Japanese light novel series Toradora!First light novel volume cover, featuring Taiga Aisakaとらドラ!GenreRomantic comedy[1]Slice of life[2] Light novelWritten byYuyuko TakemiyaIllustrated byYasuPublished byASCII Media WorksEnglish publisherNA: Seven Seas EntertainmentImprintDengeki BunkoDemographicMaleOriginal runMarch 10, 2006 – March 10, 2009Volumes10 (List of volumes) Light novelToradora Spin-off!Written byYuyuko TakemiyaIllustrated byYasuPubl...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. التلفزيون الجزائري Televisi AljazairDiluncurkan24 Desember 1956Situs webwww.entv.dz EPTV or Televisi Aljazair (ar: التلفزيون الجزائري) Adalah Aljazair saluran publik pertama umum dari Établissement public de télévi...

Overview of tourism in Gibraltar Greeting sign at the Gibraltar Cruise Terminal. Tourism in Gibraltar constitutes one of the British Overseas Territory's most important economic pillars, alongside financial services and shipping.[1] Gibraltar's main attractions are the Rock of Gibraltar and its resident population of Barbary macaques (or apes), the territory's military heritage, duty-free shopping, casinos and marinas.[2] Although the population of Gibraltar numbers only some ...

 

ε Andromedae Location of ε Andromedae (lower left of center) Data pengamatan Epos J2000.0      Ekuinoks J2000.0 (ICRS) Rasi bintang Andromeda Asensio rekta  00j 38m 33.3458d[1] Deklinasi  +29° 18′ 42.305″[1] Magnitudo tampak (V) 4.37[1] Ciri-ciri Kelas spektrum G6IIIFe-3CH1[2] Indeks warna U−B +0.47[2] Indeks warna B−V +0.87[2] Indeks warna V−R 0.6[...

 

Theme in Tolkien's Middle-earth writings In Tolkien's legendarium, ancestry provides a guide to character. The apparently genteel Hobbits of the Baggins family turn out to be worthy protagonists of The Hobbit and The Lord of the Rings. Bilbo Baggins is seen from his family tree to be both a Baggins and an adventurous Took. Similarly, Frodo Baggins has some relatively outlandish Brandybuck blood. Among the Elves of Middle-earth, as described in The Silmarillion, the highest are the peaceful V...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) فرانسيسكو ايسبوسيتو معلومات شخصية الميلاد 4 مارس 1955 (69 سنة)  اسطابة  الإقامة اسطابة  مواطنة إيطاليا  الطول 170 سنتيمتر  الوزن 70 كيلوغرام  الحياة ...

 

Law enforcement agency in Florida, United States Law enforcement agency Florida Highway PatrolFHP patchFHP sealFHP BadgeAbbreviationFHPMottoCourtesy, Service, ProtectionAgency overviewFormed1939; 85 years ago (1939)Preceding agenciesState Road Department (1930's)Motor Carrier Compliance (absorbed 2011)Employees2,496 (total)Annual budget$259.9 million (2019)Jurisdictional structureOperations jurisdictionFlorida, USFHP Troops & BoundariesSize65,795 square miles (170,410...

 

ISIL's funding This article needs to be updated. Please help update this article to reflect recent events or newly available information. (January 2018) Since 2012, the Islamic State (IS) has produced annual reports giving numerical information on its operations, somewhat in the style of corporate reports, seemingly in a bid to encourage potential donors.[1][2] In 2014, the RAND Corporation analyzed ISIL's funding sources by studying Bharatpur documents — personal letters, e...

1997 studio album by Michael Learns to RockNothing to LoseStudio album by Michael Learns to RockReleasedSeptember 12, 1997Recorded1995–1996 in Aarhus (MLTR Studio) and Copenhagen (Grapehouse Studio, Peter Mark Studio, Elsound Studio)StudioMLTR Studio, Peter Mark Studio, Grapehouse Studio, Elsound StudioGenreSoft rock, pop rock, alternative rock, soulLabelMLTR Music, Medley, Warner MusicProducerMichael Learns to Rock, Oli PoulsenMichael Learns to Rock chronology Paint My Love(1996) N...

 

Ed Harris al San Diego Comic-Con 2017 Ed Harris, vero nome Edward Allen Harris (Englewood, 28 novembre 1950), è un attore, regista e produttore cinematografico statunitense. Ha ottenuto quattro candidature al Premio Oscar: una come miglior attore per il film Pollock nel 2001, e tre come miglior attore non protagonista per Apollo 13 nel 1996, The Truman Show nel 1999 e The Hours nel 2003[1]. Nel 1999 si è aggiudicato il Golden Globe per il miglior attore non protagonista per il film ...