Pseudocapacitance

Simplified view of a double-layer with specifically adsorbed ions which have submitted their charge to the electrode to explain the faradaic charge-transfer of the pseudocapacitance.
Hierarchical classification of supercapacitors and related types

Pseudocapacitance is the electrochemical storage of electricity in an electrochemical capacitor that occurs due to faradaic charge transfer originating from a very fast sequence of reversible faradaic redox, electrosorption or intercalation processes on the surface of suitable electrodes.[1][2][3] Pseudocapacitance is accompanied by an electron charge-transfer between electrolyte and electrode coming from a de-solvated and adsorbed ion. One electron per charge unit is involved. The adsorbed ion has no chemical reaction with the atoms of the electrode (no chemical bonds arise[4]) since only a charge-transfer takes place. Supercapacitors that rely primarily on pseudocapacitance are sometimes called pseudocapacitors.[5][6][7]

Faradaic pseudocapacitance only occurs together with static double-layer capacitance. Pseudocapacitance and double-layer capacitance both contribute inseparably to the total capacitance value. The amount of pseudocapacitance depends on the surface area, material and structure of the electrodes. Pseudocapacitance may contribute more capacitance than double-layer capacitance for the same surface area by 100x.[1]

The amount of electric charge stored in a pseudocapacitance is linearly proportional to the applied voltage. The unit of pseudocapacitance is farad.

History

Redox reactions

Differences

Rechargeable batteries

Redox reactions in batteries with faradaic charge-transfer between an electrolyte and the surface of an electrode were characterized decades ago. These chemical processes are associated with chemical reactions of the electrode materials usually with attendant phase changes. Although these chemical processes are relatively reversible, battery charge/discharge cycles often irreversibly produce unreversed chemical reaction products of the reagents. Accordingly, the cycle-life of rechargeable batteries is usually limited. Further, the reaction products lower power density. Additionally, the chemical processes are relatively slow, extending charge/discharge times.

Electro-chemical capacitors

Schematic representation of a double layer on an electrode (BMD) model. 1. Inner Helmholtz plane, (IHP), 2. Outer Helmholtz plane (OHP), 3. Diffuse layer, 4. Solvated electrolyte ions (cations) 5. Specifically adsorbed ions (redox ion, which contributes to the pseudocapacitance), 6. Molecules of the solvent

A fundamental difference between redox reactions in batteries and in electrochemical capacitors (supercapacitors) is that in the latter, the reactions are a very fast sequence of reversible processes with electron transfer without any phase changes of the electrode molecules. They do not involve making or breaking chemical bonds. The de-solvated atoms or ions contributing the pseudocapacitance simply cling[4] to the atomic structure of the electrode and charges are distributed on surfaces by physical adsorption processes. Compared with batteries, supercapacitor faradaic processes are much faster and more stable over time, because they leave only traces of reaction products. Despite the reduced amount of these products, they cause capacitance degradation. This behavior is the essence of pseudocapacitance.

Pseudocapacitive processes lead to a charge-dependent, linear capacitive behavior, as well as the accomplishment of non-faradaic double-layer capacitance in contrast to batteries, which have a nearly charge-independent behavior. The amount of pseudocapacitance depends on the surface area, material and structure of the electrodes. The pseudocapacitance may exceed the value of double-layer capacitance for the same surface area by 100x.[1]

Capacitance functionality

Intercalated metal atoms between planar graphite layers
Confinement of solvated ions in pores, such as those present in carbide-derived carbon (CDC). As the pore size approaches the size of the solvation shell, the solvent molecules are removed, resulting in larger ionic packing density and increased charge storage capability.

Applying a voltage at the capacitor terminals moves the polarized ions or charged atoms in the electrolyte to the opposite polarized electrode. Between the surfaces of the electrodes and the adjacent electrolyte an electric double-layer forms. One layer of ions on the electrode surface and the second layer of adjacent polarized and solvated ions in the electrolyte move to the opposite polarized electrode. The two ion layers are separated by a single layer of electrolyte molecules. Between the two layers, a static electric field forms that results in double-layer capacitance. Accompanied by the electric double-layer, some de-solvated electrolyte ions pervade the separating solvent layer and are adsorbed by the electrode's surface atoms. They are specifically adsorbed and deliver their charge to the electrode. In other words, the ions in the electrolyte within the Helmholtz double-layer also act as electron donors and transfer electrons to the electrode atoms, resulting in a faradaic current. This faradaic charge transfer, originated by a fast sequence of reversible redox reactions, electrosorptions or intercalation processes between electrolyte and the electrode surface is called pseudocapacitance.[8]

Depending on the electrode's structure or surface material, pseudocapacitance can originate when specifically adsorbed ions pervade the double-layer, proceeding in several one-electron stages. The electrons involved in the faradaic processes are transferred to or from the electrode's valence-electron states (orbitals) and flow through the external circuit to the opposite electrode where a second double-layer with an equal number of opposite-charged ions forms. The electrons remain in the strongly ionized and electrode surface's "electron hungry" transition-metal ions and are not transferred to the adsorbed ions. This kind of pseudocapacitance has a linear function within narrow limits and is determined by the potential-dependent degree of surface coverage of the adsorbed anions. The storage capacity of the pseudocapacitance is limited by the finite quantity of reagent or of available surface.

Systems that give rise to pseudocapacitance:[8]

  • Redox system: Ox + ze‾ ⇌ Red
  • Intercalation system: Li+
    in "Ma
    2
    "
  • Electrosorption, underpotential deposition of metal adatoms or H: M+
    + ze‾ + S ⇌ SM or H+
    + e‾ + S ⇌ SH (S = surface lattice sites)

All three types of electrochemical processes have appeared in supercapacitors.[8][9]

When discharging pseudocapacitance, the charge transfer is reversed and the ions or atoms leave the double-layer and spread throughout the electrolyte.

Materials

Electrodes' ability to produce pseudocapacitance strongly depends on the electrode materials' chemical affinity to the ions adsorbed on the electrode surface as well as on the electrode pore structure and dimension. Materials exhibiting redox behavior for use as pseudocapacitor electrodes are transition-metal oxides inserted by doping in the conductive electrode material such as active carbon, as well as conducting polymers such as polyaniline or derivatives of polythiophene covering the electrode material.

Transition metal oxides/sulfides

These materials provide high pseudocapacitance and were thoroughly studied by Conway.[1][10] Many oxides of transition metals like ruthenium (RuO
2
), iridium (IrO
2
), iron (Fe
3
O
4
), manganese (MnO
2
) or sulfides such as titanium sulfide (TiS
2
) or their combinations generate faradaic electron–transferring reactions with low conducting resistance.[citation needed]

Ruthenium dioxide (RuO
2
) in combination with sulfuric acid (H
2
SO
4
) electrolyte provides one of the best examples of pseudocapacitance, with a charge/discharge over a window of about 1.2 V per electrode. Furthermore, the reversibility on these transition metal electrodes is excellent, with a cycle life of more than several hundred-thousand cycles. Pseudocapacitance originates from a coupled, reversible redox reaction with several oxidation steps with overlapping potential. The electrons mostly come from the electrode's valence orbitals. The electron transfer reaction is very fast and can be accompanied with high currents.

The electron transfer reaction takes place according to:

where [11]

During charge and discharge, H+
(protons) are incorporated into or removed from the RuO
2
crystal lattice, which generates storage of electrical energy without chemical transformation. The OH groups are deposited as a molecular layer on the electrode surface and remain in the region of the Helmholtz layer. Since the measurable voltage from the redox reaction is proportional to the charged state, the reaction behaves like a capacitor rather than a battery, whose voltage is largely independent of the state of charge.

Conducting polymers

Another type of material with a high amount of pseudocapacitance is electron-conducting polymers. Conductive polymer such as polyaniline, polythiophene, polypyrrole and polyacetylene have a lower reversibility of the redox processes involving faradaic charge transfer than transition metal oxides, and suffer from a limited stability during cycling.[citation needed] Such electrodes employ electrochemical doping or dedoping of the polymers with anions and cations. Highest capacitance and power density are achieved with a n/p-type polymer configuration, with one negatively charged (n-doped) and one positively charged (p-doped) electrode.

Structure

Pseudocapacitance may originate from the electrode structure, especially from the material pore size. The use of carbide-derived carbons (CDCs) or carbon nanotubes (CNTs) as electrodes provides a network of small pores formed by nanotube entanglement. These nanoporous materials have diameters in the range of <2 nm that can be referred to as intercalated pores. Solvated ions in the electrolyte are unable to enter these small pores, but de-solvated ions that have reduced their ion dimensions are able to enter, resulting in larger ionic packing density and increased charge storage. The tailored sizes of pores in nano-structured carbon electrodes can maximize ion confinement, increasing specific capacitance by faradaic H
2
adsorption treatment. Occupation of these pores by de-solvated ions from the electrolyte solution occurs according to (faradaic) intercalation.[12][13][14]

Verification

A cyclic voltammogram shows the fundamental difference of the current curves between static capacitors and pseudocapacitors

Pseudocapacitance properties can be expressed in a cyclic voltammogram. For an ideal double-layer capacitor, the current flow is reversed immediately upon reversing the potential yielding a rectangular-shaped voltammogram, with a current independent of the electrode potential. For double-layer capacitors with resistive losses, the shape changes to a parallelogram. In faradaic electrodes the electrical charge stored in the capacitor is strongly dependent on the potential, therefore, the voltammetry characteristics deviate from the parallelogram due to a delay while reversing the potential, ultimately coming from kinetic charging processes.[15][16]

Examples

Brezesinki et al. showed that mesoporous films of α-MoO3 have improved charge storage due to lithium ions inserting into the gaps of α-MoO3. They claim this intercalation pseudocapacitance takes place on the same timescale as redox pseudocapacitance and gives better charge-storage capacity without changing kinetics in mesoporous MoO3. This approach is promising for batteries with rapid charging ability, comparable to that of lithium batteries,[17] and is promising for efficient energy materials.

Other groups have used vanadium oxide thin films on carbon nanotubes for pseudocapacitors. Kim et al. electrochemically deposited amorphous V2O5·xH2O onto a carbon nanotube film. The three-dimensional structure of the carbon nanotubes substrate facilitates high specific lithium-ion capacitance and shows three times higher capacitance than vanadium oxide deposited on a typical Pt substrate.[18] These studies demonstrate the capability of deposited oxides to effectively store charge in pseudocapacitors.

Conducting polymers, such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT), have tunable electronic conductivity and can achieve high doping levels with the proper counterion. A high-performing conducting polymer pseudocapacitor has high cycling stability after undergoing charge/discharge cycles. Successful approaches include embedding the redox polymer in a host phase (e.g. titanium carbide) for stability and depositing a carbonaceous shell onto the conducting polymer electrode. These techniques improve cyclability and stability of the pseudocapacitor device.[19]

Applications

Pseudocapacitance is an important property in supercapacitors.

References

  1. ^ a b c d B. E. Conway (1999), Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (in German), Berlin: Springer, pp. 1–8, ISBN 978-0306457364 see also Brian E. Conway in Electrochemistry Encyclopedia: ELECTROCHEMICAL CAPACITORS Their Nature, Function, and Applications Archived 2012-04-30 at the Wayback Machine
  2. ^ Marin S. Halper, James C. Ellenbogen (March 2006). Supercapacitors: A Brief Overview (PDF) (Technical report). MITRE Nanosystems Group. Archived from the original (PDF) on 2014-02-01. Retrieved 2014-01-20.
  3. ^ E. Frackowiak, F. Beguin: Carbon Materials For The Electrochemical Storage Of Energy In Capacitors. In: CARBON. 39, 2001, S. 937–950 (PDF[permanent dead link]) E. Frackowiak, K. Jurewicz, S. Delpeux, F. Béguin: Nanotubular Materials For Supercapacitors. In: Journal of Power Sources. Volumes 97–98, Juli 2001, S. 822–825, doi:10.1016/S0378-7753(01)00736-4.
  4. ^ a b Garthwaite, Josie (12 July 2011). "How ultracapacitors work (and why they fall short)". Earth2Tech. GigaOM Network. Archived from the original on 22 November 2012. Retrieved 23 April 2013.
  5. ^ Conway, Brian Evans, "ELECTROCHEMICAL CAPACITORS Their Nature, Function, and Applications", Electrochemistry Encyclopedia, archived from the original on 2012-04-30
  6. ^ Frackowiak, Elzbieta; Beguin, Francois (2001). "Carbon Materials For The Electrochemical Storage Of Energy In Capacitors" (PDF). Carbon. 39 (6): 937–950. Bibcode:2001Carbo..39..937F. doi:10.1016/S0008-6223(00)00183-4.[permanent dead link]
  7. ^ Frackowiak, Elzbieta; Jurewicz, K.; Delpeux, S.; Béguin, Francois (July 2001), "Nanotubular Materials For Supercapacitors", Journal of Power Sources, 97–98: 822–825, Bibcode:2001JPS....97..822F, doi:10.1016/S0378-7753(01)00736-4
  8. ^ a b c B.E. Conway, W.G. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid components
  9. ^ B. E. Conway, V. Birss, J. Wojtowicz, The role and the utilization of pseudocapacitance for energy storage by supercapacitors, Journal of Power Sources, Volume 66, Issues 1–2, May–June 1997, Pages 1–14
  10. ^ Conway, B. E. (May 1991). "Transition from 'Supercapacitor' to 'Battery' Behavior in Electrochemical Energy Storage". J. Electrochem. Soc. 138 (6): 1539–1548. Bibcode:1991JElS..138.1539C. doi:10.1149/1.2085829.
  11. ^ P. Simon, Y.Gogotsi, Materials for electrochemical capacitors, nature materials, VOL 7, NOVEMBER 2008
  12. ^ A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors Archived 2014-01-02 at the Wayback Machine, Journal of Power Sources 157 (2006) 11–27
  13. ^ B.P. Bakhmatyuk, B.Ya. Venhryn, I.I. Grygorchak, M.M. Micov and S.I. Mudry, INTERCALATION PSEUDO-CAPACITANCE IN CARBON SYSTEMS OF ENERGY STORAGE
  14. ^ P. Simon, A. Burke, Nanostructured carbons: Double-Layer capacitance and more Archived 2018-12-14 at the Wayback Machine
  15. ^ Elżbieta Frąckowiak, Francois Beguin, PERGAMON, Carbon 39 (2001) 937–950, Carbon materials for the electrochemical storage of energy in Capacitors
  16. ^ Why does an ideal capacitor give rise to a rectangular cyclic voltammogram
  17. ^ Brezesinski, Torsten; Wang, John; Tolbert, Sarah H.; Dunn, Bruce (2010-02-01). "Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors". Nature Materials. 9 (2): 146–151. Bibcode:2010NatMa...9..146B. doi:10.1038/nmat2612. ISSN 1476-1122. PMID 20062048.
  18. ^ Kim, Il-Hwan; Kim, Jae-Hong; Cho, Byung-Won; Lee, Young-Ho; Kim, Kwang-Bum (2006-06-01). "Synthesis and Electrochemical Characterization of Vanadium Oxide on Carbon Nanotube Film Substrate for Pseudocapacitor Applications". Journal of the Electrochemical Society. 153 (6): A989 – A996. Bibcode:2006JElS..153A.989K. doi:10.1149/1.2188307. ISSN 0013-4651.
  19. ^ Bryan, Aimee M.; Santino, Luciano M.; Lu, Yang; Acharya, Shinjita; D’Arcy, Julio M. (2016-09-13). "Conducting Polymers for Pseudocapacitive Energy Storage". Chemistry of Materials. 28 (17): 5989–5998. doi:10.1021/acs.chemmater.6b01762. ISSN 0897-4756.

Literature

Read other articles:

Al QawsالقوسTanggal pendirian2007Kantor pusatYerusalem TimurLokasiHaifaJaffaRamallahWilayah layanan PalestinaDirekturHaneen MaikeySitus webalqaws.org Al Qaws untuk Keragaman Seksual dan Gender dalam Masyarakat Palestina (Bahasa Arab: القوس للتعددية الجنسية والجندرية في المجتمع الفلسطيني), seringkali disebut sebagai alQaws, adalah sebuah organisasi masyarakat sipil Palestina yang didirikan dalam aktivisme akar rumput, yang ditujukan untuk men...

 

فرانشيلين   الاسم الرسمي (بالفرنسية: Francheleins)‏(بالفرنسية: Amareins-Francheleins-Cesseins)‏[1]  الإحداثيات 46°04′25″N 4°48′31″E / 46.073611111111°N 4.8086111111111°E / 46.073611111111; 4.8086111111111[2]  [3] تاريخ التأسيس 1 يناير 1974  تقسيم إداري  البلد فرنسا[4]  التقسيم الأعلى آن  ...

 

Plasmodium Klasifikasi ilmiah (tanpa takson): SAR Superfilum: Alveolata Filum: Apicomplexa Kelas: Aconoidasida Ordo: Haemosporida Famili: Plasmodiidae Genus: PlasmodiumMarchiafava & Celli, 1885 Spesies Plasmodium accipiteris Plasmodium achiotense Plasmodium achromaticum Plasmodium acuminatum Plasmodium adunyinkai Plasmodium aegyptensis Plasmodium aeuminatum Plasmodium agamae Plasmodium alloelongatum Plasmodium anasum Plasmodium anomaluri Plasmodium arachniformis Plasmodium ashfordi Plasm...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Berlin Barat – berita · surat kabar · buku · cendekiawan · JSTOR Berlin BaratBerlin (West) Inggris : West BerlinSektor yang diduduki Sekutu di Berlin1949–1990 Panji daerah Coat of arms Berlin bara...

 

Une télévision datant de 1947. Musée de la civilisation, fonds Jourdain-Fiset - Gabriel Miller.La télévision québécoise est une partie essentielle de la culture québécoise et canadienne-française. Elle se développe à partir des années 1950, lorsque le gouvernement fédéral du Canada se donne comme objectif d'offrir une alternative aux émissions de télévision américaines. Historique Développement de la télévision (1932-1960) John Baird, un physicien écossais, met au point...

 

Head of state and government of the U.S. state of North Carolina Governor of North CarolinaGubernatorial sealState flagIncumbentRoy Coopersince January 1, 2017 (2017-01-01)Government of North CarolinaStatusHead of stateHead of governmentMember ofCouncil of StateResidenceExecutive MansionSeatRaleigh, North CarolinaTerm lengthFour years, renewable once consecutivelyInaugural holderRichard CaswellFormation1776DeputyLieutenant Governor of North CarolinaSalaryUS$198,120 per ye...

William Kenneth Hartmann William K. Hartmann adalah seorang penulis dan pengilmu keplanetan Amerika Serikat. Pranala luar (Inggris) William K. Hartmann di Internet Speculative Fiction Database William Hartmann di IMDb (dalam bahasa Inggris) (Inggris) William K. Hartmann di Novaspace Diarsipkan 2006-01-04 di Wayback Machine. (Inggris) Situs web William Hartmann Pengawasan otoritas Umum Integrated Authority File (Jerman) ISNI 1 VIAF 1 WorldCat Perpustakaan nasional Norwegia Spanyol Prancis (dat...

 

  لمعانٍ أخرى، طالع الجامع العمري (توضيح).   هذه المقالة عن المسجد العمري في درعا. لمعانٍ أخرى، طالع المسجد العمري (توضيح). الجامع العمري الكبير في محافظة درعا إحداثيات 32°36′44″N 36°06′04″E / 32.6123°N 36.101°E / 32.6123; 36.101   معلومات عامة القرية أو المدينة درعا، ...

 

Carrie SnodgressSnodgress pada tahun 1970LahirCaroline Louise Snodgress(1945-10-27)27 Oktober 1945Barrington, Illinois, A.S.Meninggal1 April 2004(2004-04-01) (umur 58)Los Angeles, California, A.S.PendidikanUniversitas Illinois UtaraArt Institute of ChicagoPekerjaanAktrisTahun aktif1969–2004Anak1 Caroline Louise Snodgress (27 Oktober 1945 – 1 April 2004)[1] adalah seorang aktris asal Amerika. Dia terkenal karena perannya di Diary of a Mad Housewife (1970), ...

Kazakhstani football club For the bandy club, see Akzhayik Sports Club. Football clubAkzhaiyk OralAqjaiyq OralFull nameFootball club Akzhayik OralAqjaiyq Oral Futbol KlubyFounded1968; 56 years ago (1968)GroundPetr Atoyan StadiumCapacity8,320ChairmanRashid KhusnutdinovManagerIgor ProkhnitskiyLeagueFirst League20234th (promoted due to Maktaaral failing licensing process) Home colours Away colours Current season FC Akzhaiyk (Kazakh: Ақжайық Орал Футбол клуб...

 

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

Irish Republican Brotherhood member and Fenian Jeremiah O'Donovan RossaJeremiah O'Donovan Rossa, circa 1900 to 1910Member of Parliament for TipperaryIn officeNovember 1869 – February 1870 Personal detailsBornJeremiah Donovanbefore 4 September 1831Reenascreena,Rosscarbery, County Cork, IrelandDied29 June 1915 (aged 83)Staten Island, New York, U.S.SpousesHonora Nora EagerEllen Buckley (Eileán Ní Bhuachalla)Mary Jane IrwinMilitary serviceAllegianceFenian BrotherhoodIrish Republ...

 

British politician This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Charles Cripps, 1st Baron Parmoor – news · newspapers · books · scholar · JSTOR (March 2009) (Learn how and when to remove this message) The Right HonourableThe Lord ParmoorKCVO PC KCLeader of the House of LordsIn office7 June 1929...

 

Not to be confused with Captain Triumph. Comics character TriumphTriumph, as he appeared in Justice League International #68 (September 1994); art by Phil Jimenez (pencils), John Stokes (inks), Gene D'Angelo (colors).Publication informationPublisherDC ComicsFirst appearanceJustice League America #91 (August 1994)Created byMark Waid & Brian Augustyn (writers)Howard Porter (artist)In-story informationAlter egoWilliam MacIntyreTeam affiliationsJustice League InternationalJustice League Task ...

British journalist The Right HonourableThe Lady WalneyHardman chairing a Policy Exchange debate, September 2014Born (1986-05-05) 5 May 1986 (age 38)Camden, London, EnglandAlma materUniversity of ExeterOccupationJournalistKnown forAssistant editor, The SpectatorSpouse John Woodcock, Baron Walney ​ ​(m. 2021)​Children1 Isabel Hardman, Baroness Walney (born 5 May 1986),[1] is a British political journalist and the assistant editor of The ...

 

  هذه المقالة عن أبو المعالي الجويني. لمعانٍ أخرى، طالع الجويني (توضيح). أبو المعالي الجويني عبد الملك بن عبد الله الجويني معلومات شخصية الميلاد 18 محرم 419 هـ / 17 فبراير (شباط) 1028 منيسابور، بلاد فارس،  الدولة العباسية الوفاة 25 ربيع الآخر 478 هـ / 20 أغسطس (آب) 1085 منيسابور، بل...

 

Obsolete term for an ethnic group in the Middle East This article is about the racial and ethnic term popular in the 19th and early 20th centuries. For the history of ancient groups who spoke Semitic languages, see ancient Semitic-speaking peoples. The first depiction of historical ethnology of the world separated into the biblical sons of Noah: Semites, Hamites and Japhetites. Gatterer's Einleitung in die Synchronistische Universalhistorie (1771) explains his view that modern history has sho...

Government regulatory agency Pakistan Medical and Dental Councilپاکستان میڈیکل اینڈ ڈینٹل کمیشنAbbreviationPM&DCFormation1962; 62 years ago (1962)FounderWajid Ali Khan BurkiHeadquartersMauve Area, Islamabad-44000Region served PakistanPresidentProf. Dr. Rizwan TajParent organizationMinistry of National Health Services, Regulation and Coordination Higher Education Commission (Pakistan)Employees 232Websitepmdc.pkFormerly calledPMC (Pakistan Medica...

 

2014 United States House of Representatives elections in Missouri ← 2012 November 4, 2014 (2014-11-04) 2016 → All 8 Missouri seats to the United States House of Representatives   Majority party Minority party   Party Republican Democratic Last election 6 2 Seats won 6 2 Seat change Popular vote 838,283 513,600 Percentage 58.77% 36.01% Swing 4.07% 5.83% Republican   60–70% Democratic   50–60%  ...