Although geometrically the star polygons also form the faces of a different sequence of (self-intersecting and non-convex) prismatic polyhedra, the graphs of these star prisms are isomorphic to the prism graphs, and do not form a separate sequence of graphs.
As with many vertex-transitive graphs, the prism graphs may also be constructed as Cayley graphs. The order-ndihedral group is the group of symmetries of a regular n-gon in the plane; it acts on the n-gon by rotations and reflections. It can be generated by two elements, a rotation by an angle of 2π/n and a single reflection, and its Cayley graph with this generating set is the prism graph. Abstractly, the group has the presentation (where r is a rotation and f is a reflection or flip) and the Cayley graph has r and f (or r, r−1, and f) as its generators.[1]
The n-gonal prism graphs with odd values of n may be constructed as circulant graphs.
However, this construction does not work for even values of n.[1]
Among all biconnectedcubic graphs, the prism graphs have within a constant factor of the largest possible number of 1-factorizations. A 1-factorization is a partition of the edge set of the graph into three perfect matchings, or equivalently an edge coloring of the graph with three colors. Every biconnected n-vertex cubic graph has O(2n/2) 1-factorizations, and the prism graphs have Ω(2n/2) 1-factorizations.[3]
The number of spanning trees of an n-gonal prism graph is given by the formula[4]
For n = 3, 4, 5, ... these numbers are
75, 384, 1805, 8100, 35287, 150528, ... (sequence A006235 in the OEIS).
The n-gonal prism graphs for even values of n are partial cubes. They form one of the few known infinite families of cubic partial cubes, and (except for four sporadic examples) the only vertex-transitive cubic partial cubes.[5]
The pentagonal prism is one of the forbidden minors for the graphs of treewidth three.[6] The triangular prism and cube graph have treewidth exactly three, but all larger prism graphs have treewidth four.
Related graphs
Other infinite sequences of polyhedral graph formed in a similar way from polyhedra with regular-polygon bases include the antiprism graphs (graphs of antiprisms) and wheel graphs (graphs of pyramids). Other vertex-transitive polyhedral graphs include the Archimedean graphs.
If the two cycles of a prism graph are broken by the removal of a single edge in the same position in both cycles, the result is a ladder graph. If these two removed edges are replaced by two crossed edges, the result is a non-planar graph called a Möbius ladder.[7]
^Jagers, A. A. (1988), "A note on the number of spanning trees in a prism graph", International Journal of Computer Mathematics, 24 (2): 151–154, doi:10.1080/00207168808803639.