Polynomial remainder theorem

In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout)[1] is an application of Euclidean division of polynomials. It states that, for every number any polynomial is the sum of and the product by of a polynomial in of degree less than the degree of In particular, is the remainder of the Euclidean division of by and is a divisor of if and only if [2] a property known as the factor theorem.

Examples

Example 1

Let . Polynomial division of by gives the quotient and the remainder . Therefore, .

Example 2

Proof that the polynomial remainder theorem holds for an arbitrary second degree polynomial by using algebraic manipulation:

So, which is exactly the formula of Euclidean division.

The generalization of this proof to any degree is given below in § Direct proof.

Proofs

Using Euclidean division

The polynomial remainder theorem follows from the theorem of Euclidean division, which, given two polynomials f(x) (the dividend) and g(x) (the divisor), asserts the existence (and the uniqueness) of a quotient Q(x) and a remainder R(x) such that

If the divisor is where r is a constant, then either R(x) = 0 or its degree is zero; in both cases, R(x) is a constant that is independent of x; that is

Setting in this formula, we obtain:

Direct proof

A constructive proof—that does not involve the existence theorem of Euclidean division—uses the identity

If denotes the large factor in the right-hand side of this identity, and

one has

(since ).

Adding to both sides of this equation, one gets simultaneously the polynomial remainder theorem and the existence part of the theorem of Euclidean division for this specific case.

Applications

The polynomial remainder theorem may be used to evaluate by calculating the remainder, . Although polynomial long division is more difficult than evaluating the function itself, synthetic division is computationally easier. Thus, the function may be more "cheaply" evaluated using synthetic division and the polynomial remainder theorem.

The factor theorem is another application of the remainder theorem: if the remainder is zero, then the linear divisor is a factor. Repeated application of the factor theorem may be used to factorize the polynomial.[3]

References

  1. ^ Piotr Rudnicki (2004). "Little Bézout Theorem (Factor Theorem)" (PDF). Formalized Mathematics. 12 (1): 49–58.
  2. ^ Larson, Ron (2014), College Algebra, Cengage Learning
  3. ^ Larson, Ron (2011), Precalculus with Limits, Cengage Learning

Read other articles:

Angelica Church nata Schuyler (Albany, 20 febbraio 1756 – New York, 13 marzo 1814[1]) è stata la figlia maggiore del Generale della Continental Army, Philip Schuyler, moglie del Membro del Parlamento britannico John Barker Church, sorella di Elizabeth Schuyler Hamilton (moglie di Alexander Hamilton) e Margarita Peggy Schuyler Van Rensselaer. Era un evidente membro dell'élite sociale dovunque lei vivesse; prima a New York, poi a Parigi, Londra, e di nuovo New York. Il villaggio e l...

 

Genus of bacteria Not to be confused with Staphylococcus. See also: Strep throat Streptococcus Scientific classification Domain: Bacteria Phylum: Bacillota Class: Bacilli Order: Lactobacillales Family: Streptococcaceae Genus: StreptococcusRosenbach, 1884 Species[1] Streptococcus acidominimus[1] Streptococcus agalactiae (Group B Streptococcus) Streptococcus alactolyticus[1] Streptococcus anginosus Streptococcus australis[1] Streptococcus caballi[1] Strep...

 

Pour les articles homonymes, voir Extraction. Colonne d'extraction liquide-liquide à l'échelle industrielle L'extraction est un procédé de séparation en génie chimique et en chimie de laboratoire qui consiste à extraire une espèce chimique, c'est-à-dire prélever une ou plusieurs espèces chimiques d'un mélange solide ou liquide. Les extractibles sont des produits aisément extraits à l'aide de solvants organiques ou aqueux, sans procéder à des traitements sévères[1]. Principe...

В Мурманской области по состоянию на 2008 год имелось 89 музеев и их филиалов, из них 44 в Мурманске. В список включены общедоступные музеи Мурманской области. В области на 2008 год имелось 2 областных музея, 8 муниципальных, 1 ведомственный, 78 общественных (25 боевой славы, 6 истори...

 

2020 Pokémon storage app and game 2020 video gamePokémon HomeDeveloper(s)ILCAPublisher(s)The Pokémon CompanySeriesPokémonPlatform(s)Nintendo Switch, Android, iOS, iPadOS, macOS[a]ReleaseFebruary 12, 2020Genre(s)Utility Pokémon Home, stylized Pokémon HOME, is a free app for mobile and Nintendo Switch developed by ILCA and published by The Pokémon Company, part of the Pokémon series, released in February 2020. Its main use is providing cloud-based storage for Pokémon. It also c...

 

جزء من سلسلة مقالات حولاللاسلطوية الفكر رأسمالية مسيحية جمعية إسلامية شيوعية بيئية أنثوية خضراء فردية تبادلية بدائية اجتماعية أو اشتراكية تعاونية او نقابية في الثقافة الدين المجتمع الفنون تاريخ النقد التعليم المبادئ النظرية الأصول الاقتصاد الرأسمالية الماركسية بدون ص...

Karim Hafez Nazionalità  Egitto Altezza 175 cm Peso 73 kg Calcio Ruolo Difensore Squadra  Pyramids Carriera Giovanili  Al-Ahly Wadi Degla Squadre di club1 2014-2015 Lierse17 (1)[1]2015-2016→  Omonia22 (0)[2]2016 Lierse2 (0)2016-2018→  Lens43 (2)2018-2019→  İstanbul Başakşehir0 (0)2019-2020→  Kasımpaşa26 (0)2020-2022 Yeni Malatyaspor77 (0)2022- Pyramids8 (0) Nazionale 2015-2019 Egitto7 (0) Palmarès ...

 

Questa voce o sezione sull'argomento militari tedeschi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Nikolaus von Üxküll-Gyllenband Nikolaus von Üxküll-Gyllenband (Güns, 14 febbraio 1877 – Berlino, 14 settembre 1944) è stato un militare tedesco. Il conte partecipò alla prima guerra mondiale nell'Imperial regio Esercito austro-ungarico. Sconten...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

Public university in Kowloon, Hong Kong Hong Kong Baptist University香港浸會大學Emblem of HKBUMotto篤信力行Motto in EnglishFaith and PerseveranceTypePublicEstablished6 March 1956; 68 years ago (1956-03-06) (as Hong Kong Baptist College)16 November 1994; 29 years ago (1994-11-16) (granted full university status)ChairmanClement C J ChenChancellorJohn Lee Ka-chiu (ex officio as Chief Executive of Hong Kong)PresidentAlexander WaiVice-presidentAlb...

 

Pour les articles homonymes, voir Abernathy. Ralph AbernathyRalph Abernathy au National Press Club en 1968.BiographieNaissance 11 mars 1926 ou 21 mars 1926LindenDécès 17 avril 1990AtlantaSépulture Lincoln Cemetery (d)Nationalité américaineFormation Université d'État de l'Alabama (baccalauréat universitaire ès sciences) (jusqu'en 1948)Université Clark Atlanta (en) (maîtrise ès arts) (jusqu'en 1951)Activités Militant des droits civiques, théologien, homme politique, ministre du c...

 

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Tanat Valley Coaches – news · newspapers · books · scholar · JSTOR (August 2023) (Learn how and when to remove this message) Tanat Valley CoachesLeyland LynxFounded1921; 103 years ago (1921)HeadquartersLlanrhaeadr-ym-MochnantService areaShropshire and PowysService typeBus and coachRoutes...

مكروكلين مثال عن البلورات التي تتبع النظام ثلاثي الميل النظام البلوري ثلاثي الميل في علم البلورات هو أحد النظم البلورية السبعة التي تصنف فيها البلورات. يوصف النظام البلوري عادة بواسطة ثلاثة متجهات. في النظام البلوري ثلاثي الميل فإن البلورة تحدد بواسطة ثلاثة متجهات ذات أط...

 

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

ميرديث الإحداثيات 42°21′30″N 74°56′04″W / 42.358333333333°N 74.934444444444°W / 42.358333333333; -74.934444444444   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة ديلاوير  خصائص جغرافية  المساحة 58.32 ميل مربع  ارتفاع 604 متر  عدد السكان  عدد السكان 1484 (1 أ...

 

A questa voce o sezione va aggiunto il template sinottico {{Edizione di competizione sportiva}} Puoi aggiungere e riempire il template secondo le istruzioni e poi rimuovere questo avviso. Se non sei in grado di riempirlo in buona parte, non fare nulla; non inserire template vuoti. Voce principale: Prima Categoria 1959-1960. Il campionato di calcio di Prima Categoria 1959-1960 è stato il massimo livello dilettantistico di quell'annata. A carattere regionale, fu il primo c...

 

Office skyscraper in Manhattan, New York This article is about the building in Manhattan, New York. For the building in Brooklyn, New York, see 55 Water Street (Brooklyn). 55 Water Street55 Water Street as seen from the East RiverGeneral informationStatusCompletedTypeOfficeArchitectural styleInternational styleLocation55 Water StreetManhattan, New York, U.S.Coordinates40°42′12″N 74°00′34″W / 40.70333°N 74.00944°W / 40.70333; -74.00944Construction started19...

ジョン・ハンターJohn Hunter 生誕 1737年8月29日スコットランド、リース死没 1821年3月13日ロンドン、ハックニー、ニューロード所属組織 イギリス海軍軍歴 七年戦争 ロシュフォール遠征 エイブラハム平原の戦い アメリカ独立戦争 ドッガーバンクの戦い ジブラルタル包囲戦 スパルタル岬の戦い フランス革命戦争 栄光の6月1日 ナポレオン戦争最終階級 海軍中将墓所 セント...

 

Part of a series onBritish law Acts of Parliament of the United Kingdom Year      1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...