Polymath Project

The Polymath Project is a collaboration among mathematicians to solve important and difficult mathematical problems by coordinating many mathematicians to communicate with each other on finding the best route to the solution. The project began in January 2009 on Timothy Gowers's blog when he posted a problem and asked his readers to post partial ideas and partial progress toward a solution.[1] This experiment resulted in a new answer to a difficult problem, and since then the Polymath Project has grown to describe a particular crowdsourcing process of using an online collaboration to solve any math problem.

Origin

In January 2009, Gowers chose to start a social experiment on his blog by choosing an important unsolved mathematical problem and issuing an invitation for other people to help solve it collaboratively in the comments section of his blog.[1] Along with the math problem itself, Gowers asked a question which was included in the title of his blog post, "is massively collaborative mathematics possible?"[2][3] This post led to his creation of the Polymath Project.

Projects for high school and college

Since its inception, it has now sponsored a "Crowdmath" project in collaboration with MIT PRIMES program and the Art of Problem Solving. This project is built upon the same idea of the Polymath project that massive collaboration in mathematics is possible and possibly quite fruitful. However, this is specifically aimed at only high school and college students with a goal of creating "a specific opportunity for the upcoming generation of math and science researchers." The problems are original research and unsolved problems in mathematics. All high school and college students from around the world with advanced background of mathematics are encouraged to participate. Older participants are welcomed to participate as mentors and encouraged not to post solutions to the problems. The first Crowdmath project began on March 1, 2016.[4][5]

Problems solved

Polymath1

The initial proposed problem for this project, now called Polymath1 by the Polymath community, was to find a new combinatorial proof to the density version of the Hales–Jewett theorem.[6] As the project took form, two main threads of discourse emerged. The first thread, which was carried out in the comments of Gowers's blog, would continue with the original goal of finding a combinatorial proof. The second thread, which was carried out in the comments of Terence Tao's blog, focused on calculating bounds on density of Hales–Jewett numbers and Moser numbers for low dimensions.

After seven weeks, Gowers announced on his blog that the problem was "probably solved",[7] though work would continue on both Gowers's thread and Tao's thread well into May 2009, some three months after the initial announcement. In total over 40 people contributed to the Polymath1 project. Both threads of the Polymath1 project have been successful, producing at least two new papers to be published under the pseudonym D. H. J. Polymath,[8][9][10] where the initials refer to the problem itself (density Hales–Jewett).

Polymath5

This project was set up in order to try to solve the Erdős discrepancy problem. It was active for much of 2010 and had a brief revival in 2012, but did not end up solving the problem. However, in September 2015, Terence Tao, one of the participants of Polymath5, solved the problem in a pair of papers. One paper proved an averaged form of the Chowla and Elliott conjectures, making use of recent advances in analytic number theory concerning correlations of values of multiplicative functions. The other paper showed how this new result, combined with some arguments discovered by Polymath5, were enough to give a complete solution to the problem. Thus, Polymath5 ended up making a significant contribution to the solution.

Polymath8

The Polymath8 project[11] was proposed to improve the bounds for small gaps between primes. It has two components:

  • Polymath8a, "Bounded gaps between primes", was a project to improve the bound H = H1 on the least gap between consecutive primes that was attained infinitely often, by developing the techniques of Yitang Zhang. This project concluded with a bound of H = 4,680.
  • Polymath8b, "Bounded intervals with many primes", was a project to improve the value of H1 further, as well as Hm (the least gap between primes with m-1 primes between them that is attained infinitely often), by combining the Polymath8a results with the techniques of James Maynard. This project concluded with a bound of H = 246, as well as additional bounds on Hm.

Both components of the Polymath8 project produced papers, one of which was published under the pseudonym D. H. J. Polymath.[12][13]

Publications

  • Polymath, D. H. J. (2010), "Density Hales-Jewett and Moser numbers", An irregular mind, Bolyai Soc. Math. Stud., vol. 21, János Bolyai Math. Soc., Budapest, pp. 689–753, arXiv:1002.0374, doi:10.1007/978-3-642-14444-8_22, MR 2815620, S2CID 15547977. From the Polymath1 project.
  • Polymath, D. H. J. (2012), "A new proof of the density Hales-Jewett theorem", Annals of Mathematics, Second Series, 175 (3): 1283–1327, arXiv:0910.3926, doi:10.4007/annals.2012.175.3.6, MR 2912706, S2CID 60078. From the Polymath1 project.
  • Tao, Terence; Croot, Ernest III; Helfgott, Harald (2012), "Deterministic methods to find primes", Mathematics of Computation, 81 (278): 1233–1246, arXiv:1009.3956, doi:10.1090/S0025-5718-2011-02542-1, MR 2869058. From the Polymath4 project. Although the journal editors required the authors to use their real names, the arXiv version uses the Polymath pseudonym.
  • Polymath, D. H. J. (2014), "New equidistribution estimates of Zhang type", Algebra & Number Theory, 9 (8): 2067–2199, arXiv:1402.0811, Bibcode:2014arXiv1402.0811P, doi:10.2140/ant.2014.8.2067. From the Polymath8 project.
  • Polymath, D.H.J. (2014), "Variants of the Selberg sieve, and bounded intervals containing many primes", Research in the Mathematical Sciences, 1 (12): 12, arXiv:1407.4897, Bibcode:2014arXiv1407.4897P, doi:10.1186/s40687-014-0012-7, MR 3373710, S2CID 119699189 From the Polymath8 project.
  • Polymath, D. H. J. (2014), "The "bounded gaps between primes" Polymath project: A retrospective analysis" (PDF), Newsletter of the European Mathematical Society, 94: 13–23, arXiv:1409.8361, Bibcode:2014arXiv1409.8361P.
  • Polymath, D. H. J. (2018), "Homogeneous length functions on groups", Algebra & Number Theory, 12 (7): 1773–1786, arXiv:1801.03908, doi:10.2140/ant.2018.12.1773, MR 3871510. From the Polymath14 project. The journal and arXiv versions use the Polymath pseudonym, though the author names appear in the journal's table of contents and on the DOI page.
  • Polymath, D. H. J. (2019), "Effective approximation of heat flow evolution of the Riemann $\xi$ function, and a new upper bound for the de Bruijn-Newman constant", Research in the Mathematical Sciences, 6 (3): 67 pp. (paper no. 31), arXiv:1904.12438, doi:10.1007/s40687-019-0193-1, MR 4011563. From the Polymath15 project.

See also

References

  1. ^ a b Nielsen, Michael (2012). Reinventing discovery: the new era of networked science. Princeton NJ: Princeton University Press. pp. 1–3. ISBN 978-0-691-14890-8.
  2. ^ Gowers, Tim (27 January 2009). "Is massively collaborative mathematics possible?". Gowers' weblog. Retrieved 2009-03-30.
  3. ^ Gowers, T.; Nielsen, M. (2009). "Massively collaborative mathematics". Nature. 461 (7266): 879–881. Bibcode:2009Natur.461..879G. doi:10.1038/461879a. PMID 19829354. S2CID 205050360.
  4. ^ ""Crowdmath" project for high school students opens on March 1". 2 January 2016. Retrieved 18 February 2016.
  5. ^ "CROWDMATH". Retrieved 18 February 2016.
  6. ^ Gowers, Tim (1 February 2009). "A combinatorial approach to density Hales-Jewett". Gower's Weblog.
  7. ^ Nielsen, Michael (2009-03-20). "The Polymath project: scope of participation". Retrieved 2009-03-30.
  8. ^ Polymath (2012). "Deterministic methods to find primes". Math. Comp. 81: 1233–1246. arXiv:1009.3956. Bibcode:2010arXiv1009.3956P.
  9. ^ Polymath (2010). "Density Hales-Jewett and Moser numbers". arXiv:1002.0374 [math.CO].
  10. ^ Polymath (2009). "A new proof of the density Hales-Jewett theorem". arXiv:0910.3926 [math.CO].
  11. ^ Polymath8 project.
  12. ^ Polymath (2014). "New equidistribution estimates of Zhang type". Algebra & Number Theory. 8 (9): 2067–2199. arXiv:1402.0811. Bibcode:2014arXiv1402.0811P. doi:10.2140/ant.2014.8.2067. S2CID 119695637.
  13. ^ Polymath (2014). "Variants of the Selberg sieve, and bounded intervals containing many primes". Research in the Mathematical Sciences. 1: 12. arXiv:1407.4897. Bibcode:2014arXiv1407.4897P. doi:10.1186/s40687-014-0012-7. S2CID 119699189.

Bibliography

  • Barany, Michael J. (2010). "'[B]ut this is blog maths and we're free to make up conventions as we go along': Polymath1 and the modalities of 'massively collaborative mathematics'". Proceedings of the 6th International Symposium on Wikis and Open Collaboration (WikiSym '10). New York: ACM. Article 10. doi:10.1145/1832772.1832786. ISBN 978-1-4503-0056-8. S2CID 17903199.
  • Cranshaw, Justin; Kittur, Aniket (2011). "The polymath project: lessons from a successful online collaboration in mathematics". Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '11). New York: ACM. pp. 1865–74. doi:10.1145/1978942.1979213. ISBN 978-1-4503-0228-9. S2CID 2498854.
  • Stefaneas Petros, Vandoulakis Ioannis "The Web as a Tool for Proving", Metaphilosophy. Special Issue: Philoweb: Toward a Philosophy of the Web. Guest Editors: Harry Halpin and Alexandre Monnin. Volume 43, Issue 4, pp 480–498, July 2012, DOI: 10.1111/j.1467-9973.2012.01758.x http://web-and-philosophy.org. Reprinted in the collection: Harry Halpin and Alexandre Monnin (Eds) Philosophical Engineering: Toward a Philosophy of the Web. Wiley-Blackwell, 2014, 149–167. DOI: 10.1002/9781118700143.ch10

Read other articles:

Misteri BanyuwangiSalah satu adegan dalam film Misteri Banyuwangi (Dukun Santet).Nama lainMisteri Banyuwangi (Dukun Santet)Sutradara Walmer Sitohang Produser Madhu S. Mahtani Ditulis oleh Walmer Sitohang PemeranAnton YanuarArif TerikasanTanggal rilis1998Durasi81 menitNegara Indonesia Bahasa Indonesia Misteri Banyuwangi (Dukun Santet) adalah Film Indonesia yang dirilis pada 1998 yang disutradarai oleh Walmer Sitohang serta dibintangi oleh Anton Yanuar dan Arif Terikasan. Sinopsis Ratmono...

Drug WarDrug War posterSutradara Johnnie To Produser Johnnie To *Wai Ka-Fai Ditulis oleh Wai Ka-Fai *Yau Nai-hoi *Ryker Chan *Yu Xi Pemeran Sun Honglei *Louis Koo *Huang Yi *Wallace Chung Penata musikXavier JamauxSinematografer Cheng Siu-Keung *To Hung-Mo PenyuntingAllen LeungPerusahaanproduksi Beijing Hairun Pictures *Milkyway Image DistributorMedia Asia Distribution (Hong Kong)Variance Films (North America)Tanggal rilis 15 November 2012 (2012-11-15) (Rome Film Festival) 2 Apr...

Toby StephensPekerjaanaktorSuami/istriAnna-Louise Plowman Toby Stephens (lahir 21 April 1969) merupakan seorang aktor TV, teater, dan film asal Inggris. Dikenal luas oleh masyarakat setelah ia memerankan karakter musuh James Bond, Gustav Graves dalam film tahun 2002, Die Another Day dan juga dalam film TV dari saluran BBC, Jane Eyre (2006). Referensi ^ Index entry. FreeBMD. ONS. Diakses tanggal 13 January 2018.  Pranala luar RSC Hamlet website Diarsipkan 2010-03-29 di Wayback Machine. In...

The Spotnicks in 2010 The Spotnicks was een Zweedse instrumentale gitaarrockgroep, die eind jaren vijftig ontstond en in de eerste helft van de jaren zestig zeer populair was. De band is het bekendst door de ruimtepakken die ze droegen tijdens optredens. The Spotnicks waren afkomstig uit Göteborg. Gitarist Bo Starander (1942-2020), die later de artiestennaam Bob Lander zou aannemen, en bassist Björn Thelin (1942-2017) richtten daar in 1956 het duo The Rebels op. Na enkele naamwijzigingen en...

Лафаміт Загальні відомостіСтатус IMA затверджений (А)[d][1][2]IMA-номер IMA1985-021Абревіатура Lpm[3]Хімічна формула As₂(Se,S)₃[4][5]Nickel-Strunz 10 2.FA.30[6]Dana 8 2.11.6.1ІдентифікаціяКолір темно-червонийdСингонія моноклінна сингонія[7]Просторова група кристалографічн...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) هذه الم

Howell Edmunds JacksonHakim Mahkamah Agung Amerika SerikatMasa jabatan14 Maret 1893 – 8 Agustus 1895 Informasi pribadiKebangsaanAmerika SerikatProfesiHakimSunting kotak info • L • B Howell Edmunds Jackson adalah hakim Mahkamah Agung Amerika Serikat. Ia mulai menjabat sebagai hakim pada mahkamah tersebut pada tanggal 14 Maret 1893. Masa baktinya sebagai hakim berakhir pada tanggal 8 Agustus 1895.[1] Referensi ^ Justices 1789 to Present. Washington, D.C.: Mahkam...

Australian archaeologist (1892–1957) V. Gordon ChildeChilde in the 1930sBornVere Gordon Childe(1892-04-14)14 April 1892Sydney, Colony of New South WalesDied19 October 1957(1957-10-19) (aged 65)Blackheath, New South Wales, AustraliaAlma materUniversity of SydneyThe Queen's College, OxfordOccupationsArchaeologistPhilologistKnown forExcavating Skara BraeMarxist archaeological theory Vere Gordon Childe (14 April 1892 – 19 October 1957) was an Australian archaeologi...

Ahe

Atoll in French Polynesia For other uses, see Ahe (disambiguation). AheNASA picture of Ahe AtollAheGeographyLocationPacific OceanCoordinates14°29′S 146°19′W / 14.483°S 146.317°W / -14.483; -146.317ArchipelagoTuamotusArea138 km2 (53 sq mi)  (lagoon)12 km2 (5 sq mi) (above water)Length23.5 km (14.6 mi)Width12.2 km (7.58 mi)Highest elevation10 m (30 ft)Highest point(unnamed)AdministrationF...

العلاقات السويسرية الكمبودية سويسرا كمبوديا   سويسرا   كمبوديا تعديل مصدري - تعديل   العلاقات السويسرية الكمبودية هي العلاقات الثنائية التي تجمع بين سويسرا وكمبوديا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا�...

Stasiun Kōwa河和駅Bangunan Stasiun Kōwa pada Juli 2009LokasiKitadamen-5 Kōwa, Mihama-cho, Chita-gun, Aichi-ken 470-2406[1]JepangKoordinat34°46′40″N 136°54′45″E / 34.7779°N 136.9124°E / 34.7779; 136.9124Koordinat: 34°46′40″N 136°54′45″E / 34.7779°N 136.9124°E / 34.7779; 136.9124Pengelola MeitetsuJalur■ Jalur Meitetsu KōwaLetak dari pangkal28.8 kilometer dari ŌtagawaJumlah peron1 peron telukInformasi lainS...

Dewan Perwakilan Rakyat RIPeriode 1982–1987 1977–1982 ← → 1987–1992 Gedung DPR/MPR (2008) Periode: 1 Oktober 1982 – 30 September 1987 Ketua: Amirmachmud(ABRI) Wakil Ketua: Kharis Suhud(ABRI)Amir Moertono(Golkar)Nuddin Lubis(PPP)Hardjantho Soemodisastro(PDI) Jumlah Anggota: 460 orang Fraksi:   Golkar (242)   PPP (94)   PDI (24)   ABRI (100) Dewan Perwakilan Rakyat Republik Indonesia periode 1982–1987 (disingkat DPR RI periode 1982...

ドンバス セヴァストポリ港に停泊中の「ドンバス」(2012年)基本情報建造所 シュチェチン造船運用者  ウクライナ海軍艦種 指揮艦級名 アムール級工作艦艦歴起工 1969年7月17日[1]進水 1969年11月29日[1]就役 1970年9月30日[1]最期 2022年4月6日戦没[2]要目基準排水量 4,690 t満載排水量 5,535 t全長 121.7 m最大幅 17 m高さ 5.1 m吃水 4.62 m主機 ディーゼルエンジ...

Marian hymn Part of a series on theMariologyof the Catholic ChurchVirgo by Josef Moroder-Lusenberg Overview Prayers Antiphons Titles Hymns to Mary Devotional practices Saints Societies Consecrations and entrustments Veneration Prayers Angelus Fátima prayers Flos Carmeli Hail Mary Hail Mary of Gold Immaculata prayer Magnificat Mary, Mother of Grace Mary Our Queen Memorare Sub tuum praesidium Antiphons Alma Redemptoris Mater Ave Regina caelorum Regina caeli Salve Regina Titles of Mary Theotoko...

Fictional villainous characters in the Harry Potter series of novels and films Death EaterVoldemort (centre) with Bellatrix Lestrange (left), Lucius Malfoy (right) and several masked Death Eaters (back) in Harry Potter and the Order of the PhoenixUniverseHarry PotterLocation Little Hangleton[HP4] Malfoy Manor[1][HP7] Forbidden Forest[HP7] LeaderLord VoldemortKey people Bellatrix Lestrange Severus Snape Lucius Malfoy Peter Pettigrew Barty Crouch Jr. PurposePrese...

Building in Illinois, United StatesEdgewater Beach HotelPostcard of Edgewater Beach Hotel showing the 1916 (at right) and 1924 buildings with connecting concourse. This part of the resort was demolished by 1971.General informationArchitectural styleSpanish Colonial Revival[1]Location5301-5355 N Sheridan RoadChicago, IllinoisCountryUnited StatesCoordinates41°59′1″N 87°39′17″W / 41.98361°N 87.65472°W / 41.98361; -87.65472Construction started1915Comple...

Persecution of and discrimination against people identified as atheists Part of a series onAtheism Concepts Implicit and explicit atheism Naturalism Negative and positive atheism History History of atheism Enlightenment State atheism New Atheism Society Demographics of atheism Discrimination against atheists Criticism of religion Secular ethics Secularism ArgumentsArguments for atheism Atheist's wager Creator of God Evil God challenge Fate of the unlearned Free will God of the gaps Hitchens's...

Fußball-Afrikameisterschaft der Frauen 2012 African Women Championship 2012 Anzahl Nationen 8 (von 25 Bewerbern) Afrikameister Äquatorialguinea Äquatorialguinea (2. Titel) Austragungsort Äquatorialguinea Äquatorialguinea Eröffnungsspiel 28. Oktober 2012 Endspiel 11. November 2012 Spiele 16 Tore 47 (⌀: 2,94 pro Spiel) Torschützenkönigin Äquatorialguinea Genoveva Añonma (6 Tore) Gelbe Karten 27 (⌀: 1,69 pro Spiel) Rote Karten 1 (⌀...

Hospital in Tai Po, Hong KongTai Po HospitalHospital AuthorityGeographyLocation9 Chuen On Road, Tai Po, Hong KongCoordinates22°27′40″N 114°10′29″E / 22.46111°N 114.17472°E / 22.46111; 114.17472OrganisationFundingPublic hospitalTypeSpecialistNetworkNew Territories East ClusterServicesEmergency departmentNo Accident & Emergency at Alice Ho Miu Ling Nethersole Hospital or Prince of Wales HospitalBeds992SpecialityRehabilitation, psychiatricHelipadNoHistoryO...

Railway station in Hertfordshire, England Welham Green The station, viewed from the bridgeWelham GreenLocation of Welham Green in HertfordshireLocationWelham GreenLocal authorityBorough of Welwyn HatfieldGrid referenceTL237056Managed byGreat NorthernStation codeWMGDfT categoryENumber of platforms2National Rail annual entry and exit2017–18 0.195 million[1]2018–19 0.199 million[1]2019–20 0.206 million[1]2020–21 65,068[1]2021–22 0.153 million[1]K...