Polar motion

Polar motion in arc-seconds as function of time in days (0.1 arcsec ≈ 3 meters).[1]

Polar motion of the Earth is the motion of the Earth's rotational axis relative to its crust.[2]: 1  This is measured with respect to a reference frame in which the solid Earth is fixed (a so-called Earth-centered, Earth-fixed or ECEF reference frame). This variation is a few meters on the surface of the Earth.

Analysis

Polar motion is defined relative to a conventionally defined reference axis, the CIO (Conventional International Origin), being the pole's average location over the year 1900. It consists of three major components: a free oscillation called Chandler wobble with a period of about 435 days, an annual oscillation, and an irregular drift in the direction of the 80th meridian west,[3] which has lately been less extremely west.[4][5]: 1 

Causes

The slow drift, about 20 m since 1900, is partly due to motions in the Earth's core and mantle, and partly to the redistribution of water mass as the Greenland ice sheet melts, and to isostatic rebound, i.e. the slow rise of land that was formerly burdened with ice sheets or glaciers.[2]: 2  The drift is roughly along the 80th meridian west. Since about 2000, the pole has found a less extreme drift, which is roughly along the central meridian. This less dramatically westward drift of motion is attributed to the global scale mass transport between the oceans and the continents.[5]: 2 

Major earthquakes cause abrupt polar motion by altering the volume distribution of the Earth's solid mass. These shifts are quite small in magnitude relative to the long-term core/mantle and isostatic rebound components of polar motion.[6]

Principle

In the absence of external torques, the vector of the angular momentum M of a rotating system remains constant and is directed toward a fixed point in space. If the earth were perfectly symmetrical and rigid, M would remain aligned with its axis of symmetry, which would also be its axis of rotation. In the case of the Earth, it is almost identical with its axis of rotation, with the discrepancy due to shifts of mass on the planet's surface. The vector of the figure axis F of the system (or maximum principal axis, the axis which yields the largest value of moment of inertia) wobbles around M. This motion is called Euler's free nutation. For a rigid Earth which is an oblate spheroid to a good approximation, the figure axis F would be its geometric axis defined by the geographic north and south pole, and identical with the axis of its polar moment of inertia. The Euler period of free nutation is

(1)   τE = 1/νE = A/(C − A) sidereal days ≈ 307 sidereal days ≈ 0.84 sidereal years

νE = 1.19 is the normalized Euler frequency (in units of reciprocal years), C = 8.04 × 1037 kg m2 is the polar moment of inertia of the Earth, A is its mean equatorial moment of inertia, and C − A = 2.61 × 1035 kg m2.[2][7]

The observed angle between the figure axis of the Earth F and its angular momentum M is a few hundred milliarcseconds (mas). This rotation can be interpreted as a linear displacement of either geographical pole amounting to several meters on the surface of the Earth: 100 mas subtends an arc length of 3.082 m, when converted to radians and multiplied by the Earth's polar radius (6,356,752.3 m). Using the geometric axis as the primary axis of a new body-fixed coordinate system, one arrives at the Euler equation of a gyroscope describing the apparent motion of the rotation axis about the geometric axis of the Earth. This is the so-called polar motion.[8]

Observations show that the figure axis exhibits an annual wobble forced by surface mass displacement via atmospheric and/or ocean dynamics, while the free nutation is much larger than the Euler period and of the order of 435 to 445 sidereal days. This observed free nutation is called Chandler wobble. There exist, in addition, polar motions with smaller periods of the order of decades.[9] Finally, a secular polar drift of about 0.10 m per year in the direction of 80° west has been observed which is due to mass redistribution within the Earth's interior by continental drift, and/or slow motions within mantle and core which gives rise to changes of the moment of inertia.[8]

The annual variation was discovered by Karl Friedrich Küstner in 1885 by exact measurements of the variation of the latitude of stars, while S.C. Chandler found the free nutation in 1891.[8] Both periods superpose, giving rise to a beat frequency with a period of about 5 to 8 years (see Figure 1).

This polar motion should not be confused with the changing direction of the Earth's rotation axis relative to the stars with different periods, caused mostly by the torques on the Geoid due to the gravitational attraction of the Moon and Sun. They are also called nutations, except for the slowest, which is the precession of the equinoxes.

Observations

Polar motion is observed routinely by space geodesy methods such as very-long-baseline interferometry,[10] lunar laser ranging and satellite laser ranging.[11] The annual component is rather constant in amplitude, and its frequency varies by not more than 1 to 2%. The amplitude of the Chandler wobble, however, varies by a factor of three, and its frequency by up to 7%. Its maximum amplitude during the last 100 years never exceeded 230 mas.

The Chandler wobble is usually considered a resonance phenomenon, a free nutation that is excited by a source and then dies away with a time constant τD of the order of 100 years. It is a measure of the elastic reaction of the Earth.[12] It is also the explanation for the deviation of the Chandler period from the Euler period. However, rather than dying away, the Chandler wobble, continuously observed for more than 100 years, varies in amplitude and shows a sometimes rapid frequency shift within a few years.[13] This reciprocal behavior between amplitude and frequency has been described by the empirical formula:[14]

(2)   m = 3.7/(ν − 0.816)   (for 0.83 < ν < 0.9)

with m the observed amplitude (in units of mas), and ν the frequency (in units of reciprocal sidereal years) of the Chandler wobble. In order to generate the Chandler wobble, recurring excitation is necessary. Seismic activity, groundwater movement, snow load, or atmospheric interannual dynamics have been suggested as such recurring forces, e.g.[11][15] Atmospheric excitation seems to be the most likely candidate.[16][17] Others propose a combination of atmospheric and oceanic processes, with the dominant excitation mechanism being ocean‐bottom pressure fluctuations.[18]

Current and historic polar motion data is available from the International Earth Rotation and Reference Systems Service's Earth orientation parameters.[19] Note in using this data that the convention is to define px to be positive along 0° longitude and py to be positive along 90°E longitude.[20]

Theory

Annual component

Figure 2. Rotation vector m of the annual component of polar motion as function of year. Numbers and tick marks indicate the beginning of each calendar month. The dash-dotted line is in the direction of the major axis. The line in the direction of the minor axis is the location of the excitation function vs. time of year. (100 mas (milliarcseconds) = 3.082 m on the Earth's surface at the poles)

There is now general agreement that the annual component of polar motion is a forced motion excited predominantly by atmospheric dynamics.[21] There exist two external forces to excite polar motion: atmospheric winds, and pressure loading. The main component is pressure forcing, which is a standing wave of the form:[17]

(3)   p = p0Θ1
−3
(θ) cos[2πνA(t − t0)] cos(λ − λ0)

with p0 a pressure amplitude, Θ1
−3
a Hough function describing the latitude distribution of the atmospheric pressure on the ground, θ the geographic co-latitude, t the time of year, t0 a time delay, νA = 1.003 the normalized frequency of one solar year, λ the longitude, and λ0 the longitude of maximum pressure. The Hough function in a first approximation is proportional to sin θ cos θ. Such standing wave represents the seasonally varying spatial difference of the Earth's surface pressure. In northern winter, there is a pressure high over the North Atlantic Ocean and a pressure low over Siberia with temperature differences of the order of 50°, and vice versa in summer, thus an unbalanced mass distribution on the surface of the Earth. The position of the vector m of the annual component describes an ellipse (Figure 2). The calculated ratio between major and minor axis of the ellipse is

(4)   m1/m2 = νC

where νC is the Chandler resonance frequency. The result is in good agreement with the observations.[2][22]

From Figure 2 together with eq.(4), one obtains νC = 0.83, corresponding to a Chandler resonance period of

(5)   τC = 441 sidereal days = 1.20 sidereal years

p0 = 2.2 hPa, λ0 = −170° the latitude of maximum pressure, and t0 = −0.07 years = −25 days.

It is difficult to estimate the effect of the ocean, which may slightly increase the value of maximum ground pressure necessary to generate the annual wobble. This ocean effect has been estimated to be of the order of 5–10%.[23]

Chandler wobble

It is improbable that the internal parameters of the Earth responsible for the Chandler wobble would be time dependent on such short time intervals. Moreover, the observed stability of the annual component argues against any hypothesis of a variable Chandler resonance frequency. One possible explanation for the observed frequency-amplitude behavior would be a forced, but slowly changing quasi-periodic excitation by interannually varying atmospheric dynamics. Indeed, a quasi-14 month period has been found in coupled ocean-atmosphere general circulation models,[24] and a regional 14-month signal in regional sea surface temperature has been observed.[25]

To describe such behavior theoretically, one starts with the Euler equation with pressure loading as in eq.(3), however now with a slowly changing frequency ν, and replaces the frequency ν by a complex frequency ν + iνD, where νD simulates dissipation due to the elastic reaction of the Earth's interior. As in Figure 2, the result is the sum of a prograde and a retrograde circular polarized wave. For frequencies ν < 0.9 the retrograde wave can be neglected, and there remains the circular propagating prograde wave where the vector of polar motion moves on a circle in anti-clockwise direction. The magnitude of m becomes:[17]

(6)   m = 14.5 p0 νC/[(ν − νC)2 + νD2]12   (for ν < 0.9)

It is a resonance curve which can be approximated at its flanks by

(7)   m ≈ 14.5 p0 νC/|ν − νC|   (for (ν − νC)2 ≫ νD2)

The maximum amplitude of m at ν = νC becomes

(8)   mmax = 14.5 p0 νCD

In the range of validity of the empirical formula eq.(2), there is reasonable agreement with eq.(7). From eqs.(2) and (7), one finds the number p0 ∼ 0.2 hPa. The observed maximum value of m yields mmax ≥ 230 mas. Together with eq.(8), one obtains

(9)   τD = 1/νD ≥ 100 years

The number of the maximum pressure amplitude is tiny, indeed. It clearly indicates the resonance amplification of Chandler wobble in the environment of the Chandler resonance frequency.

See also

References

  1. ^ Folgueira, M. (2005). "Free polar motion of a triaxial and elastic body in Hamiltonian formalism: Application to the Earth and Mars" (PDF). Astron. Astrophys. 432 (3): 1101–1113. Bibcode:2005A&A...432.1101F. doi:10.1051/0004-6361:20041312.
  2. ^ a b c d Lambeck, Kurt (2005). The earth's variable rotation : geophysical causes and consequences (Digitally printed ed.). Cambridge: Cambridge University Press. ISBN 978-0521673303.
  3. ^ "Polar motion". International Earth Rotation and Reference Systems Service. Federal Agency for Cartography and Geodesy. Retrieved 7 September 2015.
  4. ^ Chen, J.L.; Wilson, C.R.; Ries, J.C.; Tapley, B.D. (7 June 2013). "Rapid ice melting drives Earth's pole to the east". Geophys. Res. Lett. 40 (11): 2625–2630. Bibcode:2013GeoRL..40.2625C. doi:10.1002/grl.50552.
  5. ^ a b Adhikari, Surendra; Ivins, Erik R. (8 April 2016). "Climate-driven polar motion: 2003–2015". Science Advances. 2 (4): e1501693. Bibcode:2016SciA....2E1693A. doi:10.1126/sciadv.1501693. PMC 4846461. PMID 27152348.
  6. ^ Voigt, Kevin (April 20, 2011). "Quake moved Japan coast 8 feet, shifted Earth's axis". CNN.
  7. ^ Munk, Walter H.; MacDonald, Gordon J.F. (2009). The Rotation of the Earth A Geophysical Discussion (Digitally printed ed.). Cambridge: Cambridge University Press. ISBN 978-0521104067.
  8. ^ a b c Moritz, Helmut; Mueller, Ivan Istvan (1987). Earth rotation: theory and observation. Ungar.
  9. ^ Gross, Richard S.; Lindqwister, Ulf J. (4 May 1992). "Atmospheric excitation of polar motion during the GIG '91 Measurement Campaign". Geophysical Research Letters. 19 (9): 849–852. Bibcode:1992GeoRL..19..849G. doi:10.1029/92GL00935.
  10. ^ Schuh, H (1990). "Earth's rotation measured by VLBI". In Peter Brosche; Jürgen Sündermann (eds.). Earth's Rotation from Eons to Days: Proceedings of a Workshop Held at the Centre for Interdisciplinary Research (ZiF) of the University of Bielefeld, FRG. September 26-30, 1988. Springer Berlin Heidelberg. pp. 1–12. doi:10.1007/978-3-642-75587-3_1. ISBN 978-3-642-75587-3.
  11. ^ a b Eubanks, T.M. (1993). "Variations in the orientation of the earth". In David E. Smith; Donald L. Turcotte (eds.). Contributions of space geodesy to geodynamics: Earth dynamics. Washington, D.C.: American Geophysical Union. ISBN 9781118669723.
  12. ^ Dickey, Jean; Eubanks, T. (July 1985). "Earth Rotation and Polar Motion: Measurements and Implications". IEEE Transactions on Geoscience and Remote Sensing. GE-23 (4): 373–384. Bibcode:1985ITGRS..23..373D. doi:10.1109/TGRS.1985.289427. S2CID 46607194.
  13. ^ Guinot, B., The Chandlerian wobble from 1900 to 1970, Astron. Astrophys., 19, 07, 1992
  14. ^ Vondrak, J., Long-periodic behaviour of polar motion between 1900 and 1980, A. Geophys., 3, 351, 1985
  15. ^ Runcorn, S.K., et al., The excitation of the Chandler wobble, Surv. Geophys., 9, 419, 1988
  16. ^ Hide, 1984 Rotation of the atmosphere of the earth and planets, Phil. Trans. R. Soc., A313, 107
  17. ^ a b c Volland, H (1996). "Atmosphere and Earth' Rotation". Surv. Geophys. 17 (1): 101. Bibcode:1996SGeo...17..101V. doi:10.1007/bf01904476. S2CID 129884741.
  18. ^ Gross, R (2001). "The excitation of the Chandler Wobble". Geophys. Res. Lett. 27 (15): 2329. Bibcode:2000GeoRL..27.2329G. doi:10.1029/2000gl011450.
  19. ^ "Earth orientation data". International Earth Rotation and Reference Systems Service. Federal Agency for Cartography and Geodesy. Retrieved 7 September 2015.
  20. ^ "IERS Conventions 2010: Chapter 8". p. §8.3.
  21. ^ Wahr, J.M. (1988). "The Earth's Rotation". Annu. Rev. Earth Planet. Sci. 16: 231. Bibcode:1988AREPS..16..231W. doi:10.1146/annurev.ea.16.050188.001311. S2CID 54540284.
  22. ^ Jochmann, H., The Earth rotation as a cyclic process and as an indicator within the Earth's interior, Z. geol. Wiss., 12, 197, 1984
  23. ^ Wahr, J.M., The effects of the atmosphere and oceans on the Earth's wobble — I. Theory, Geophys. Res. J. R. Astr. Soc., 70, 349, 1982 doi:10.1111/j.1365-246X.1982.tb04972.x
  24. ^ Hameed, S.; Currie, R.G. (1989). "Simulation of the 14-month Chandler wobble in a global climatic model". Geophys. Res. Lett. 16 (3): 247. Bibcode:1989GeoRL..16..247H. doi:10.1029/gl016i003p00247.
  25. ^ Kikuchi, I., and I. Naito 1982 Sea surface temperature analysis near the Chandler period, Proceedings of the International Latitude Observatory of Mizusawa, 21 K, 64

Further reading

Read other articles:

GEAMobnas GEAInformasiProdusenPT InkaMasa produksi2011Bodi & rangkaKelasCity Car GEA adalah merek mobil Indonesia yang dibuat oleh PT Inka (Industri Kereta Api). GEA merupakan singkatan dari Gulirkan Energi Alternatif. Sumber tenaga GEA adalah Mesin Rusnas berkapasitas 640 cc. Mesin ini, dibuat oleh BPPT. GEA mampu dipacu sampai dengan 90 km/jam. Sejarah Program Riset Nasional yang ditujukan untuk membuat Mobil nasional dimulai pda tahun 2002, dalam program ini pembuatan mesin diserahkan ...

 

 

The Star (Malaysia)TipeSurat kabar harianFormatTabloidPemilikStar Media Group Berhad (ROC 10894D) (sebelumnya dikenal sebagai Star Publications (Malaysia) Berhad)RedaksiDatuk Leanne GohDidirikan9 September 1971Pandangan politikPro-kerajaanBahasaInggrisPusatJalan 16/11, 46350 Petaling Jaya, Selangor Darul EhsanSirkulasi surat kabar248,413 (Daily Star) 246,652 (Sunday Star) 105,645 (Daily Star E-paper) 104,804 (Sunday Star E-paper)*Sumber: Biro Audit Sirkulasi, Malaysia - 1 Juli 2005 - 31 Desem...

 

 

Первая Силезская война (1740-42)Основной конфликт: Война за австрийское наследство и Силезские войны Столкновение австрийской и прусской кавалерии в битве при Мольвице, 1771 год. Картина работы Августа Генриха Фердинанда Тегетмейера Дата 16 декабря 1740 — 11 июня 1742 года Место С�...

У этого термина существуют и другие значения, см. Александровская Слобода (значения). Александровская слобода Крепостная стена XVII века Город Александров Год постройки XV—XVII века Количество башен 5 Официальный сайт Медиафайлы на Викискладе Объект культурного наследия...

 

 

Kota Tanjungpinang Tanjung PinangIbu kota provinsiTranskripsi bahasa daerah • Abjad Jawiتنجوڠ ڤينڠBerkas:Haji Fisabilillah Monument.jpgDari atas, kiri ke kanan: Pemandangan Pulau Dompak, Gedung Daerah, Makam Para Sultan Melayu, Monumen Raja Haji Fisabilillah, dan Museum Sultan Sulaiman Badrul Alamsyah LambangJulukan: Kota GurindamMotto: Jujur bertutur, bijak bertindakPetaKota TanjungpinangPetaTampilkan peta SumatraKota TanjungpinangKota Tanjungpinang (Indon...

 

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Radio FGWilayah siarPrancisFrekuensiBermacam sesuai kotaMulai mengudara1981PemilikFG ConceptSitus webwww.radiofg.com Radio FG (sebelumnya FG DJ Radio) merupakan sebuah stasiun radio berbahasa Prancis yang mulai mengudara dari Paris, Prancis dalam 98.2 FM. Merupakan stasiun radio yang menyiarkan musik House, Techno, Dance dan R'n'B. Sejarah Radio FG didirikan tahun 1981 sebagai radio komunitas yang berakar pada adegan homoseksual Paris dan mendukung komunitas homoseksual. 'FG' dikatakan memili...

 

 

AirportMcGrath AirportIATA: MCGICAO: PAMCFAA LID: MCGSummaryAirport typePublicOwnerState of Alaska DOT&PF - Central RegionServesMcGrath, AlaskaElevation AMSL341 ft / 104 mCoordinates62°57′10″N 155°36′25″W / 62.95278°N 155.60694°W / 62.95278; -155.60694MapMCGLocation of airport in AlaskaRunways Direction Length Surface ft m 16/34 5,936 1,809 Asphalt 5/23 2,000 610 Gravel Statistics (2012)Aircraft operations11,000Based aircraft10Source: Fed...

 

 

Pour les articles homonymes, voir Saint-Symphorien. Saint-Symphorien-des-Monts Église Saint-Symphorien. Administration Pays France Région Normandie Département Manche Arrondissement Avranches Intercommunalité Mont-Saint-Michel-Normandie Statut commune déléguée Maire délégué Mandat Joël Lemoussu 2020-2026 Code postal 50640 Code commune 50557 Démographie Population 125 hab. (2021) Densité 18 hab./km2 Géographie Coordonnées 48° 32′ 39″ nord, 1° ...

SC BastiaisCalcio Lioni di Furiani, Turchini[1] Segni distintiviUniformi di gara Casa Trasferta Colori sociali Blu SimboliMoro Dati societariCittàBastia Nazione Francia ConfederazioneUEFA Federazione FFF CampionatoLigue 2 Fondazione1905 Presidente Claude Ferrandi Allenatore Lilian Laslandes StadioArmand Cesari(16 480 posti) Sito websc-bastia.corsica Palmarès Titoli nazionali2 Ligue 22 Championnat National Trofei nazionali1 Coppe di Francia1 Supercoppa di Francia Trofei int...

 

 

Disambiguazione – Se stai cercando altri significati, vedi Vittorio Alfieri (disambigua). «Volli, e volli sempre, e fortissimamente volli» (dalla Lettera responsiva a Ranieri de' Calzabigi, 7 settembre 1783) Vittorio AlfieriVittorio Alfieri ritratto da François-Xavier Fabre (1797), Palazzo Alfieri (Asti), ritenuto dal poeta il più somigliante[1] e da lui donato alla sorella Giulia nel 1798[2]Conte di CortemiliaStemma In carica1750 –1803[3] Investitura1769...

 

 

Town in Devon, England For other uses, see Barnstaple (disambiguation). Human settlement in EnglandBarnstapleBarnstaple Clock TowerBarnstapleLocation within DevonPopulation23,976 (Parish, 2021)[1]31,275 (Built up area, 2021)[2]OS grid referenceSS5633Civil parishBarnstapleDistrictNorth DevonShire countyDevonRegionSouth WestCountryEnglandSovereign stateUnited KingdomPost townBARNSTAPLEPostcode districtEX31, EX32Dialling code01271PoliceDevon and Corn...

Shaikhul Hadith,Shah Ahmad Shafi Amir Hefazat-e-Islam BangladeshMasa jabatanJanuari 2010 – 18 September 2020Pendahulujabatan didirikanPenggantiJunaid Babunagari Informasi pribadiLahir1916Rangunia, Bengal, India BritaniaMeninggal18 September 2020(2020-09-18) (umur 104)Dhaka, BangladeshAgamaIslamKebangsaanBangladeshKewarganegaraanIndia Britania (1916-1947)Pakistan (1947-1971)Bangladesh (1971-2020)ZamanEra modernDenominasiSunniMazhabHanafiKredoMaturidiGerakanDeobandiMinat utamaHa...

 

 

جُنيب الرحم الاسم العلميParametrium   تفاصيل نوع من مسراق[1]،  وكيان تشريحي معين  [لغات أخرى]‏  جزء من ملحقات الرحم  معرفات ترمينولوجيا أناتوميكا 09.1.03.021   FMA 77061  UBERON ID 0010391  [عدل في ويكي بيانات ] تعديل مصدري - تعديل   جنيب الرحم أو مُجَاوِرَاتُ الر...

 

 

Jalan Yan'an Barat延安西路Peron stasiunLokasiJalan Kaixuan (凯旋路) dan Jalan Yan'an BaratDistrik Changning, ShanghaiTiongkokKoordinat31°12′35″N 121°25′01″E / 31.209616°N 121.417062°E / 31.209616; 121.417062OperatorShanghai No. 3 Metro Operation Co. Ltd.Jalur      Jalur 3      Jalur 4 Jumlah peron2 peron sampingKonstruksiJenis strukturAtas tanahSejarahDibuka 26 Desember 2000 (2000-12-26) (Jalur 3) 31 Desem...

この項目では、南海電気鉄道南海本線の駅について説明しています。 阪堺電気軌道阪堺線の停留場については「浜寺駅前停留場」をご覧ください。 かつて存在した阪堺電鉄の駅については「浜寺駅」をご覧ください。 この記事の出典や参考文献は、一次資料や記事主題の関係者による情報源に頼っています。 信頼できる第三者情報源とされる出典の追加が求められて...

 

 

روبرت كيرشنر معلومات شخصية الميلاد 15 أغسطس 1949 (العمر 75 سنة)لونغ برانش  الجنسية الولايات المتحدة الأمريكية عضو في الأكاديمية الوطنية للعلوم،  والأكاديمية الأمريكية للفنون والعلوم  الحياة العملية المدرسة الأم معهد كاليفورنيا للتقانةجامعة هارفاردكلية هارفارد  ش...

 

 

دول العالم ملونة حسب نظام الحكم1      دول ذات نظام رئاسي2      دول ذات نظام شبه رئاسي2      دول ذات نظام برلماني2      دول ذات نظام الحزب الواحد      دول ذات نظام ملكي دستوري برلماني      ملكيات مطلقة  ...

American baseball player (born 1942) Baseball player Frank JohnsonOutfielder/Third baseman/First basemanBorn: (1942-07-22) July 22, 1942 (age 82)El Paso, Texas, U.S.Batted: RightThrew: RightMLB debutSeptember 7, 1966, for the San Francisco GiantsLast MLB appearanceJune 12, 1971, for the San Francisco GiantsMLB statisticsBatting average.211Home runs4Runs batted in43 Teams San Francisco Giants (1966–1971) Lotte Orions (1972) Frank Herbert Johnson (born July ...

 

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) بطولة أفريقيا للشباب 1999 تفاصيل البطولة الدولة المستضيفة  غانا السلسلة كأس الأمم الإفريقية تحت 20 سنة...