Photosynthetic picoplankton

Picoplankton observed by epifluorescence

Photosynthetic picoplankton or picophytoplankton is the fraction of the photosynthetic phytoplankton of cell sizes between 0.2 and 2 μm (i.e. picoplankton). It is especially important in the central oligotrophic regions of the world oceans that have very low concentration of nutrients.

History

  • 1952: Description of the first truly picoplanktonic species, Chromulina pusilla, by Butcher.[1] This species was renamed in 1960 to Micromonas pusilla[2] and a few studies have found it to be abundant in temperate oceanic waters, although very little such quantification data exists for eukaryotic picophytoplankton.
  • 1979: Discovery of marine Synechococcus by Waterbury[3] and confirmation with electron microscopy by Johnson and Sieburth.[4]
  • 1982: The same Johnson and Sieburth demonstrate the importance of small eukaryotes by electron microscopy.[5]
  • 1983: W.K.W Li and colleagues, including Trevor Platt show that a large fraction of marine primary production is due to organisms smaller than 2 μm.[6]
  • 1986: Discovery of "prochlorophytes" by Chisholm and Olson in the Sargasso Sea,[7] named in 1992 as Prochlorococcus marinus.[8]
  • 1994: Discovery in the Thau lagoon in France of the smallest photosynthetic eukaryote known to date, Ostreococcus tauri, by Courties.[9]
  • 2001: Through sequencing of the ribosomal RNA gene extracted from marine samples, several European teams discover that eukaryotic picoplankton are highly diverse.[10][11] This finding followed on the first discovery of such eukaryotic diversity in 1998 by Rappe and colleagues at Oregon State University, who were the first to apply rRNA sequencing to eukaryotic plankton in the open-ocean, where they discovered sequences that seemed distant from known phytoplankton[12] The cells containing DNA matching one of these novel sequences were recently visualized and further analyzed using specific probes and found to be broadly distributed.[13]

Methods of study

Analysis of picoplankton by flow cytometry

Because of its very small size, picoplankton is difficult to study by classic methods such as optical microscopy. More sophisticated methods are needed.

  • Epifluorescence microscopy allows researchers to detect certain groups of cells possessing fluorescent pigments such as Synechococcus which possess phycoerythrin.
  • Flow cytometry measures the size ("forward scatter") and fluorescence of 1,000 in 10,000 cells per second. It allows one to determine very easily the concentration of the various picoplankton populations on marine samples. Three groups of cells (Prochlorococcus, Synechococcus and picoeukaryotes) can be distinguished. For example Synechococcus is characterized by the double fluorescence of its pigments: orange for phycoerythrin and red for chlorophyll. Flow cytometry also allows researchers to sort out specific populations (for example Synechococcus) in order put them in culture, or to make more detailed analyses.
  • Analysis of photosynthetic pigments such as chlorophyll or carotenoids by high precision chromatography (HPLC) allows researchers to determine the various groups of algae present in a sample.
  • Molecular biology techniques:
  • Cloning and sequencing of genes such as that of ribosomal RNA, which allows researchers to determine total diversity within a sample
  • DGGE (denaturing gel electrophoresis) that is faster than the previous approach allows researchers to have an idea of the global diversity within a sample
  • In situ hybridization (FISH) uses fluorescent probes recognizing specific taxon, for example a species, a genus or a class.[14] This original description as a species is now thought to be composed of a number of different cryptic species, a finding that has been confirmed by a genome sequencing project of two strains led by researchers at the Monterey Bay Aquarium Research Institute.[15]
  • Quantitative PCR can be used, as FISH, to determine the abundance of specific groups. It has the main advantage to allow the rapid analysis of a large number of samples simultaneously,[16] but requires more sophisticated controls and calibrations.

Composition

Three major groups of organisms constitute photosynthetic picoplankton:

  • Cyanobacteria belonging to the genus Synechococcus of a size of 1 μm (micrometer) were first discovered in 1979 by J. Waterbury[3] (Woods Hole Oceanographic Institution). They are quite ubiquitous, but most abundant in relatively mesotrophic waters.
  • Cyanobacteria belonging to the genus Prochlorococcus are particularly remarkable. With a typical size of 0.6 μm, Prochlorococcus was discovered only in 1988[7] by two American researchers, Sallie W. (Penny) Chisholm (Massachusetts Institute of Technology) and R.J. Olson (Woods Hole Oceanographic Institution). In spite of its small size, this photosynthetic organism is undoubtedly the most abundant of the planet: indeed its density can reach up to 100 million cells per liter and it can be found down to a depth of 150 m in all the intertropical belt.[17]
  • Picoplanktonic eukaryotes are the least well known, as demonstrated by the recent discovery of major groups. Andersen created in 1993 a new class of brown algae, the Pelagophyceae.[18] More surprising still, the discovery in 1994[9] of a eukaryote of very small size, Ostreococcus tauri, dominating the phytoplanktonic biomass of a French brackish lagoon (étang de Thau), shows that these organisms can also play a major ecological role in coastal environments. In 1999, yet a new class of alga was discovered,[19] the Bolidophyceae, very close genetically of diatoms, but quite different morphologically. At the present time, about 50 species are known belonging to several classes.
Algal classes containing picoplankton species
Classes Picoplanktonic genera
Chlorophyceae Nannochloris
Prasinophyceae Micromonas, Ostreococcus, Pycnococcus
Prymnesiophyceae Imantonia
Pelagophyceae Pelagomonas
Bolidophyceae Bolidomonas
Dictyochophyceae Florenciella

The use of molecular approaches implemented since the 1990s for bacteria, were applied to the photosynthetic picoeukaryotes only 10 years later around 2000. They revealed a very wide diversity[10][11] and brought to light the importance of the following groups in the picoplankton:

In temperate coastal environment, the genus Micromonas (Prasinophyceae) seems dominant.[14] However, in numerous oceanic environments, the dominant species of eukaryotic picoplankton remain still unknown.[20]

Ecology

Vertical distribution of picoplankton in the Pacific Ocean

Each picoplanktonic population occupies a specific ecological niche in the oceanic environment.

  • The Synechococcus cyanobacterium is generally abundant in mesotrophic environments, such as near the equatorial upwelling or in coastal regions.
  • The Prochlorococcus cyanobacterium replaces it when the waters becomes impoverished in nutrients (i.e., oligotrophic). On the other hand, in temperate regions such as the North Atlantic Ocean, Prochlorococcus is absent because the cold waters prevent its development.
  • The diversity of eukaryotes derives from their presence in a large variety of environments. In oceanic regions, they are often observed at depth, at the base of the well-lit layer (the "euphotic" layer). In coastal regions, certain sorts of picoeukaryotes such as Micromonas dominate. As with larger plankton, their abundance follows a seasonal cycle with a maximum in summer.

Thirty years ago, it was hypothesized that the speed of division for micro-organisms in central oceanic ecosystems was very slow, of the order of one week or one month per generation. This hypothesis was supported by the fact that the biomass (estimated for example by the contents of chlorophyll) was very stable over time. However, with the discovery of the picoplankton, it was found that the system was much more dynamic than previously thought. In particular, small predators of a size of a few micrometres which ingest picoplanktonic algae as quickly as they were produced were found to be ubiquitous. This extremely sophisticated predator-prey system is nearly always at equilibrium and results in a quasi-constant picoplankton biomass. This close equivalence between production and consumption makes it extremely difficult to measure precisely the speed at which the system turns over.

In 1988, two American researchers, Carpenter and Chang, suggested estimating the speed of cell division of phytoplankton by following the course of DNA replication by microscopy. By replacing the microscope by a flow cytometer, it is possible to follow the DNA content of picoplankton cells over time. This allowed researchers to establish that picoplankton cells are highly synchronous: they replicate their DNA and then divide all at the same time at the end of the day. This synchronization could be due to the presence of an internal biological clock.

Genomics

In the 2000s, genomics allowed to cross a supplementary stage. Genomics consists in determining the complete sequence of genome of an organism and to list every gene present. It is then possible to get an idea of the metabolic capacities of the targeted organisms and understand how it adapts to its environment. To date, the genomes of several types of Prochlorococcus[21][22] and Synechococcus,[23] and of a strain of Ostreococcus[24] have been determined. The complete genomes of two different Micromonas strains revealed that they were quite different (different species) and had similarities with land plants.[15] Several other cyanobacteria and of small eukaryotes (Bathycoccus, Pelagomonas) are under sequencing. In parallel, genome analyses begin to be done directly from oceanic samples (ecogenomics or metagenomics),[25] allowing us to access to large sets of gene for uncultivated organisms.

Genomes of photosynthetic picoplankton strains
that have been sequenced to date
Genus Strain Sequencing center Remark
Prochlorococcus MED4 JGI
SS120 Genoscope
MIT9312 JGI
MIT9313 JGI
NATL2A JGI
CC9605 JGI
CC9901 JGI
Synechococcus WH8102 JGI
WH7803 Genoscope
RCC307 Génoscope
CC9311 TIGR [26]
Ostreococcus OTTH95 Genoscope
Micromonas RCC299 and CCMP1545 JGI [15]

See also

Notes and references

  1. ^ Butcher, R. (1952). Contributions to our knowledge of the smaller marine algae. Journal of the Marine Biological Association of the UK 31: 175-91.
  2. ^ Manton, I. & Parke, M. (1960). Further observations on small green flagellates with special reference to possible relatives of Chromulina pusilla Butcher. Journal of the Marine Biological Association of the UK 39: 275-98.
  3. ^ a b Waterbury, J. B. et al. (1979). Wide-spread occurrence of a unicellular, marine planktonic, cyanobacterium. Nature 277: 293-4.
  4. ^ Johnson, P. W. & Sieburth, J. M. (1979). Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnology and Oceanography 24: 928-35.
  5. ^ Johnson, P. W. & Sieburth, J. M. (1982). In-situ morphology and occurrence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. Journal of Phycology 18: 318-27.
  6. ^ Li, W. K. W. et al. (1983). Autotrophic picoplankton in the tropical ocean. Science 219: 292-5.
  7. ^ a b Chisholm, S. W. et al. (1988). A novel free-living prochlorophyte occurs at high cell concentrations in the oceanic euphotic zone. Nature 334: 340-3.
  8. ^ Chisholm, S. W. et al. (1992). Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Archives of Microbiology 157: 297-300.
  9. ^ a b Courties, C. et al. (1994). Smallest eukaryotic organism. Nature 370: 255.
  10. ^ a b López-García, P. et al. (2001). Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409: 603-7.
  11. ^ a b Moon-van der Staay, S. Y. et al. (2001). Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409: 607-10.
  12. ^ Rappe, M. et al. (1998). Phylogenetic diversity of ultraplankton plastid Small-Subunit rRNA genes recovered in environmental nucleic acid samples from the Pacific and Atlantic coasts of the United States. Applied and Environmental Microbiology 64294-303.
  13. ^ Kim, E., Harrison, J., Sudek, S. et al. (2011). Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proceedings of the National Academy of Sciences USA. Vol. 108: 1496-1500.
  14. ^ a b Not, F. et al. (2004). A single species Micromonas pusilla (Prasinophyceae) dominates the eukaryotic picoplankton in the western English Channel. Applied and Environmental Microbiology 70: 4064-72.
  15. ^ a b c Worden, A.Z., et al. (2009). Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324: 268-272.
  16. ^ Johnson, Z. I. et al. (2006). Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311: 1737-40.
  17. ^ Partensky, F. et al. (1999). Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiology and Molecular Biology Reviews 63: 106-27.
  18. ^ Andersen, R. A. et al. (1993). Ultrastructure and 18S rRNA gene sequence for Pelagomonas calceolata gen. and sp. nov. and the description of a new algal class, the Pelagophyceae classis nov. Journal of Phycology 29: 701-15.
  19. ^ Guillou, L. et al. (1999). Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). Journal of Phycology 35: 368-81.
  20. ^ Worden, A.Z. & Not, F.(2008) Ecology and Diversity of Picoeukaryotes. Book Chapter in: Microbial Ecology of the Ocean, 2nd Edition. Ed. D. Kirchman. Wiley.
  21. ^ Rocap, G. et al. (2003). Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424: 1042-7.
  22. ^ Dufresne, A. et al. (2003). Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proceedings of the National Academy of Sciences of the United States of America 100: 10020-5.
  23. ^ Palenik, B. et al. (2003). The genome of a motile marine Synechococcus. Nature 424: 1037-42.
  24. ^ Derelle, E. et al. (2006). Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences of the United States of America 103: 11647-52.
  25. ^ Venter, J. C. et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66-74.
  26. ^ Palenik, B. et al. (2006). Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal environment. PNAS 103: 13555-9.

Bibliography

Cyanobacteria
  • Zehr, J. P., Waterbury, J. B., Turner, P. J., Montoya, J. P., Omoregie, E., Steward, G. F., Hansen, A. & Karl, D. M. 2001. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412:635-8
Eukaryotes
  • Butcher, R. 1952. Contributions to our knowledge of the smaller marine algae. J. Mar. Biol. Assoc. UK. 31:175-91.
  • Manton, I. & Parke, M. 1960. Further observations on small green flagellates with special reference to possible relatives of Chromulina pusilla Butcher. J. Mar. Biol. Assoc. UK. 39:275-98.
  • Eikrem, W., Throndsen, J. 1990. The ultrastructure of Bathycoccus gen. nov. and B. prasinos sp. nov., a non-motile picoplanktonic alga (Chlorophyta, Prasinophyceae) from the Mediterranean and Atlantic. Phycologia 29:344-350
  • Chrétiennot-Dinet, M. J., Courties, C., Vaquer, A., Neveux, J., Claustre, H., et al. 1995. A new marine picoeucaryote: Ostreococcus tauri gen et sp nov (Chlorophyta, Prasinophyceae). Phycologia 34:285-292
  • Sieburth, J. M., M. D. Keller, P. W. Johnson, and S. M. Myklestad. 1999. Widespread occurrence of the oceanic ultraplankter, Prasinococcus capsulatus (Prasinophyceae), the diagnostic "Golgi-decapore complex" and the newly described polysaccharide "capsulan". J. Phycol. 35: 1032-1043.
  • Not, F., Valentin, K., Romari, K., Lovejoy, C., Massana, R., Töbe, K., Vaulot, D. & Medlin, L. K. 2007. Picobiliphytes, a new marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315:252-4.
  • Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. 2008. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol. Rev. 32:795-820.
Ecology
  • Platt, T., Subba-Rao, D. V. & Irwin, B. 1983. Photosynthesis of picoplankton in the oligotrophic ocean. Nature 300:701-4.
  • Stomp M, Huisman J, de Jongh F, Veraart AJ, Gerla D, Rijkeboer M, Ibelings BW, Wollenzien UIA, Stal LJ. 2004. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432: 104-107.
  • Campbell, L., Nolla, H. A. & Vaulot, D. 1994. The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol. Oceanogr. 39:954-61.
Molecular Biology and Genomes
  • Rappé, M. S., P. F. Kemp, and S. J. Giovannoni. 1995. Chromophyte plastid 16S ribosomal RNA genes found in a clone library from Atlantic Ocean seawater. J. Phycol. 31: 979-988.

Read other articles:

2021 South Korean occult thriller film The Cursed: Dead Man’s PreyOfficial teaser posterHangul방법: 재차의Revised RomanizationBang-beop: Jaechaeui Directed byKim Yong-wanWritten byYeon Sang-hoStarringUhm Ji-wonJung Ji-soJung Moon-sungOh Yoon-ahCinematographyLee Ji-hoonEdited byLee Yeon JungMusic byKim Dong-ukProductioncompaniesClimax Studio (formerly known as Lezhin Studio)[1][2]KeyEastStudio DragonDistributed byCJ EntertainmentRelease date July 28, 2021 ...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Blue Star Wicca – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove ...

 

Form of short-term borrowing Repo redirects here. For other uses, see Repo (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Repurchase agreement – news · newspapers · books · scholar · JSTOR (September 2022) (Learn how and when to remove this template message) Part of a series onFinance Mark...

Украинцы в Молдавии Численность Республика Молдова: около 282 тыс. по офиц. данным[1] непризнанная ПМР:около 160 тыс. Расселение  Молдавия Язык украинский, молдавский, русский Религия в большинстве случаев — христиане: греко-католики православные Украинцы в Молдавии (...

 

Bola lampu plasma.(video) Bola lampu plasma yang dinyalakan. Lampu plasma atau disebut juga bola lampu plasma adalah sebuah lampu lucutan gas yang menggunakan plasma sebagai sumber cahaya. Lampu plasma diciptakan oleh Nikola Tesla setelah percobaannya dengan arus listrik frekuensi tinggi pada tabung gelas hampa untuk kepentingan mempelajari fenomena tegangan tinggi, tetapi versi modern didesain oleh Bill Parker.[1] Tesla menyebut ciptaannya ini sebuah tabung lucutan gas lembam. Deskri...

 

Ward in Hokkaidō, JapanHigashi 東区WardHigashi Ward FlagSealLocation of Higashi-ku in SapporoCountryJapanPrefectureHokkaidōCitySapporoEstablishedApril 1, 1972Area • Total56.97 km2 (22.00 sq mi)Population (2021) • Total262,195 • Density4,600/km2 (12,000/sq mi) Estimation as of August 31, 2021Time zoneUTC+9 (Japan Standard Time)Postal065-8612Address7-1 Kita Juichijyo Higashi, Higashi-ku, Sapporo-shi, HokkaidoWebsiteHigashi Wa...

  此條目介紹的是2012年在上海创办的一家民营新闻媒体。关于1946年在上海创刊的一份周刊,请见「观察 (杂志)」。关于2013年在上海创办、原名「上海觀察」的网络应用程序,请见「上觀新聞」。关于“观察者”的其他含义,请见「观察者」。 此條目過於依赖第一手来源。 (2021年1月17日)请補充第二手及第三手來源,以改善这篇条目。 观察者网观察者网首页在2019年7月...

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

2018 film directed by Jen McGowan Rust CreekTheatrical release posterDirected byJen McGowanWritten byJulie LipsonStory by Stu Pollard Julie Lipson Produced by Stu Pollard Nicholaas Bertelsen Harris McCabe Starring Hermione Corfield Jay Paulson Sean O'Bryan Micah Hauptman Daniel R. Hill CinematographyMichelle LawlerEdited byDavid HopperMusic byH. Scott SalinasProductioncompanyLunacy ProductionsDistributed byIFC FilmsRelease dates May 3, 2018 (2018-05-03) (Bentonville Film Fe...

Genus of wild pigs This article is about the animal. For other uses, see Warthog (disambiguation). Warthog Male common warthogPhacochoerus africanusTswalu Kalahari Reserve, South Africa Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Artiodactyla Family: Suidae Tribe: Phacochoerini Genus: PhacochoerusF. Cuvier, 1826 Type species Aper aethiopicus[1]Pallas, 1766 Species Phacochoerus aethiopicus Phacochoerus africanus Synonyms Aper Pa...

 

Ne doit pas être confondu avec La Chaîne parlementaire. Pour les articles homonymes, voir LCP. LCP - Assemblée nationaleCaractéristiquesCréation 21 mars 2000Propriétaire Assemblée nationaleSlogan « Donnons du sens »Format d'image 576i (SDTV) et 1080i (HDTV)Langue FrançaisPays FranceStatut Chaîne publique d'information parlementaire et politiqueSiège social 106, rue de l'Université75007 ParisSite web lcp.frDiffusionNumérique TNT : chaîne no 13 (temps partiel...

 

Village in Tamil Nadu, IndiaThaiyurvillageThaiyurLocation in Tamil Nadu, IndiaShow map of Tamil NaduThaiyurThaiyur (India)Show map of IndiaCoordinates: 12°47′N 80°11′E / 12.783°N 80.183°E / 12.783; 80.183Country IndiaStateTamil NaduDistrictChengalpattuGovernment • TypePanchayati raj (India) • BodyGram panchayatLanguages • OfficialTamilTime zoneUTC+5:30 (IST) Thaiyur is a southern suburb of Chennai, Tamil Nadu, India, in...

Form of natural gas for easier storage and transport LNG redirects here. For other uses, see LNG (disambiguation). Not to be confused with liquefied petroleum gas, nor with compressed natural gas, nor with natural-gas condensate (natural gas liquids). A liquefied natural gas ship at Świnoujście LNG terminal in Poland Liquefied natural gas (LNG) is natural gas (predominantly methane, CH4, with some mixture of ethane, C2H6) that has been cooled down to liquid form for ease and safety of non-p...

 

Ambrose Bebb William Ambrose Bebb (* 4. Juli 1894; † 27. April 1955) war ein walisischer Philologe, Autor und Politiker. Ambrose Bebb war der Sohn des Tagebuchautors Edward Hughes Bebb. Er war der Vater des walisischen Rugby-Spielers Dewi Bebb. Die Familie Bebb stammte ursprünglich aus Cardiganshire. Als Mitbegründer der Partei Plaid Cymru hatte Bebb großes Interesse an Politik und engagierte sich entsprechend. In seinem politischen Denken war er beeinflusst von Charles Maurras und der p...

 

فريدي أدو (بالإنجليزية: Freddy Adu)‏  معلومات شخصية الميلاد 2 يونيو 1989 (العمر 35 سنة)[1]تيما الطول 5 قدم 8 بوصة (1.73 م) مركز اللعب وسط مهاجممهاجم الجنسية الولايات المتحدة غانا  معلومات النادي النادي الحالي باهيا مسيرة الشباب سنوات فريق 2002-2003 أكاديمية IMG 2002–2003 IMG Academy&#...

2024年11月(霜月) 日 月 火 水 木 金 土 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 日付の一覧 各月 1 2 3 4 5 6 7 8 9 10 11 12 11月30日(じゅういちがつさんじゅうにち)は、グレゴリオ暦で年始から334日目(閏年では335日目)にあたり、年末まであと31日ある。11月の最終日である。 できごと 日本政府が初めて外国との訴訟当事者になった千島艦事件(1892)。�...

 

Svein Oddvar MoenInformazioni personaliArbitro di Calcio Federazione Norvegia Altezza185 cm Peso81 kg Attività nazionale AnniCampionatoRuolo 2004-TippeligaenArbitro Attività internazionale AnniConfederazioneRuolo 2005-UEFA e FIFAArbitro EsordioLettonia-Liechtenstein 4-117 ottobre 2007 Svein Oddvar Moen (Haugesund, 22 gennaio 1979) è un arbitro di calcio norvegese. Indice 1 Carriera 2 Note 2.1 Fonti 3 Altri progetti Carriera Arbitro della massima serie norvegese dal 2004, Svein Oddvar ...

 

Influential art schools in France Not to be confused with Musée des Beaux Arts (disambiguation). For the former art school in Montreal, see École des beaux-arts de Montréal. Palais des études of the École nationale supérieure des Beaux-Arts, Paris École des Beaux-Arts (French for 'School of Fine Arts'; pronounced [ekɔl de boz‿aʁ]) refers to a number of influential art schools in France. The term is associated with the Beaux-Arts style in architecture and city planni...

AreaGli Area negli anni Settanta. Da sinistra: Paolo Tofani, Demetrio Stratos, Giulio Capiozzo, Ares Tavolazzi, Patrizio Fariselli Paese d'origine Italia GenereFusion[1][2]Rock sperimentale[1][2]Rock progressivo[2] Periodo di attività musicale1972 – 19831993 – 20002009 – in attività EtichettaCrampsAscoltoSony Music Album pubblicati15 Studio7 Live5 Raccolte3 Modifica dati su Wikidata · Manuale Gli...

 

Carlo CesiNaissance 17 avril 1622 ou 17 avril 1625AntrodocoDécès 6 janvier 1682 ou 6 janvier 1686RietiActivités Peintre, graveurLieu de travail Rome (1645-1686)modifier - modifier le code - modifier Wikidata Carlo Cesi, parfois appelé Carlo Cesio, né à Antrodoco le 17 avril 1622 et mort à Rieti le 6 janvier 1682 (à 59 ans)[1] est un graveur et peintre italien actif au XVIIe siècle. Biographie Carlo Cesi, fils de Pietro, originaire de Todi, est né à Antrodoco le 17 avril 1...