Phailin
|
Read other articles:
Ukiran melengkung pada bagian atas rangka pintu yang disebut Jurai Lawang. Jurai Tawing Halat pada bagian tengah. Jurai Lawang adalah suatu bentuk melengkung setengah lingkaran atau bulan sabit dengan ornamen mirip tirai terbuka terdapat pada ambang atas rangka pintu pada rumah Baanjung yang merupakan rumah adat suku Banjar di Kalimantan Selatan. Jurai Lawang biasanya berupa ornamen ukiran tumbuhan atau geometris dengan kombinasi tali bapintal, sulur-suluran, bunga-bunga dan kaligrafi Arab. T...
A Nightmare on Elm Street 4: The Dream MasterSutradaraRenny HarlinProduser Robert Shaye Rachel Talalay Skenario Brian Helgeland Ken and Jim Wheats Cerita William Kotzwinkle Brian Helgeland BerdasarkanPara karakteroleh Wes CravenBruce WagnerPemeranRobert EnglundPenata musik Craig Safan SinematograferSteven FierbergPenyunting Michael N. Knue Jack Tucker Chuck Weiss Perusahaanproduksi Heron Communications Smart Egg Pictures DistributorNew Line CinemaTanggal rilis 19 Agustus 1988 (1988...
Australian politician For the Irish businessman, see Philip Lynch. The Right HonourableSir Phillip LynchKCMGDeputy Leader of the Liberal PartyIn office20 December 1972 – 8 April 1982LeaderBilly SneddenMalcolm FraserPreceded byBilly SneddenSucceeded byJohn HowardTreasurer of AustraliaIn office11 November 1975 – 19 November 1977Prime MinisterMalcolm FraserPreceded byBill HaydenSucceeded byJohn HowardMinister for Industry and CommerceIn office20 December 1977 – 1...
Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёры...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Penyedia Jasa Keuangan – berita · surat kabar · buku · cendekiawan · JSTOR Penyedia Jasa Keuangan (PJK) diartikan sebagai penyedia jasa di bidang keuangan di Indonesia. Kegiatan PJK diatur oleh Undang-un...
Part of a series on theHistory of CanadaBenjamin West's The Death of General Wolfe Timeline (list) Pre-colonization 1534–1763 1764–1867 1867–1914 1914–1945 1945–1960 1960–1981 1982–present Historically significant Events Sites People Topics Agricultural Cultural Constitutional Economic Former colonies Immigration Indigenous Medicine Military Monarchical Peacekeeping Population Sports Religion Territorial evolution Women By provinces and territories Alberta British Columbia Mani...
53°24′14″N 2°56′20″W / 53.404°N 2.939°W / 53.404; -2.939 Former metropolitan borough council ward in Liverpool, England Human settlement in EnglandPictonPicton ward (2004) within LiverpoolArea2.173 km2 (0.839 sq mi)Population18,906 (2021 census)• Density8,700/km2 (23,000/sq mi)Registered Electors11,445 (2021 election)Metropolitan boroughCity of LiverpoolMetropolitan countyMerseysideRegionNorth WestCountryEnglandSov...
American reality television series World's Most Amazing VideosGenreReality televisionClip showCreated byBruce NashVoices ofDon LaFontaine (announcer)Narrated byStacy Keach (1999–2007)Erik Thompson (2008)Theme music composerShawn K. ClementComposerShawn K. ClementCountry of originUnited StatesOriginal languageEnglishNo. of seasons5No. of episodes65ProductionExecutive producersAndrew JebbBruce NashRobyn NashDebra WeeksRunning time42 minutes (without commercials)Production companiesNash Entert...
Augustin-Louis Cauchy In matematica, una successione di Cauchy o successione fondamentale è una successione tale che, comunque si fissi una distanza arbitrariamente piccola ε > 0 {\displaystyle \varepsilon >0} , da un certo punto in poi tutti gli elementi della successione hanno distanza reciproca inferiore ad ε {\displaystyle \varepsilon } . Ogni successione convergente è di Cauchy, e tale nome è dovuto al matematico e ingegnere Augustin-Louis Cauchy. Indice 1 Definizi...
Grafico del logaritmo naturale del fattoriale In matematica, si definisce fattoriale di un numero naturale n {\displaystyle n} , indicato con n ! {\displaystyle n!} , il prodotto dei numeri interi positivi minori o uguali a tale numero. In formula: n ! := ∏ k = 1 n k = 1 ⋅ 2 ⋅ 3 ⋯ ( n − 1 ) ⋅ n {\displaystyle n!:=\prod _{k=1}^{n}k=1\cdot 2\cdot 3\cdots (n-1)\cdot n} per la convenzione del prodotto vuoto si definisce inoltre 0 ! := 1 {\displaystyle 0!:...
此條目没有列出任何参考或来源。 (2013年2月8日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 莱奥波尔多·加尔铁里Leopoldo Fortunato Galtieri Castelli 阿根廷总统(實質)任期1981年12月22日—1982年6月18日副总统Víctor Martínez前任卡洛斯·拉科斯特继任阿尔弗雷多·奥斯卡·圣琼 个人资料出生(1926-07-15)1926�...
British engineer This article is about the civil engineer. For the baggage handler, see John Smeaton (born 1976). For the Australian cricket umpire, see John Smeaton (umpire). John SmeatonSmeaton, with the Eddystone Lighthouse in the backgroundBorn(1724-06-08)8 June 1724Austhorpe, West Riding of Yorkshire, EnglandDied28 October 1792(1792-10-28) (aged 68)Austhorpe, West Riding of Yorkshire, EnglandResting placeSt Mary's Church, WhitkirkOccupationCivil engineerAwardsCopley Medal (1759) Joh...
Top level New Zealand netball league ANZ PremiershipCurrent season, competition or edition: 2023 ANZ Premiership seasonFormerlyANZ ChampionshipSportNetballFounded2016First season2017AdministratorNetball New ZealandNo. of teams6CountryNew ZealandMost recentchampion(s)Northern Mystics (2nd title) (2023)Most titlesCentral Pulse (3 titles)TV partner(s)Sky Sport (New Zealand)Sponsor(s)ANZLevel on pyramid1RelatedcompetitionsSuper ClubNational Netball LeagueOfficial websiteanzpremiership.co.nz The A...
URLwww.allmovie.comTipepangkalan data daring dan basis data film Bersifat komersial?YaPendaftaranTidakBahasaInggrisPemilikMacrovision CorporationPembuatMichael Erlewine Berdiri sejak1998NegaraAmerika Serikat Peringkat Alexa50.917 (28 November 2017)50.885 50.907 StatusDaring All Movie Guide adalah basis data informasi komersial tentang film, bintang film, dan televisi.[1][2] Situs web ini didirikan oleh Michael Erlewine, yang juga pendiri AllMusic dan AllGame. Basis data dilise...
English, Scottish, Irish and Great Britain legislationActs of parliaments of states preceding the United Kingdom Of the Kingdom of EnglandRoyal statutes, etc. issued beforethe development of Parliament 1225–1267 1275–1307 1308–1325 Temp. incert. 1327–1376 1377–1397 1399–1411 1413–1421 1422–1460 1461 1463 1464 1467 1468 1472 1474 1477 1482 1483 1485–1503 1509–1535 1536 1539–1540 1541 1542 1543 1545 1546 1547 1548 1549 1551 ...
This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this message) Márcia GoldschmidtBornJuly 22São Paulo, BrazilNationalityBrazilianOccupation(s)TV presente...
Part of a series onHuman rights in North Korea Human rights abuses Human rights in North Korea CensorshipMedia Corruption Freedom of religion Disability PrisonsKwanliso (concentration camps) ProstitutionKippumjo (Pleasure Squad) Songbun (ascribed social status) Slavery (Human trafficking) Executions Racism Human experimentation Persecution of Christians Political prisons (Kwanliso) Kaechon (No. 14) Yodok (No. 15 - closed) Hwasong (No. 16) Pukchang (No. 18) Hoeryong (No. 22 - closed) Chongjin...
Solotchinskoye peat railwayOverviewLocaleRyazan Oblast, RussiaTerminiPriozernyWebsitewww.peter-peat.comServiceTypeNarrow-gauge railwayOperator(s)ООО «Peter-Peat»HistoryOpened2010TechnicalLine length3 kilometres (1.9 mi)Track gauge750 mm (2 ft 5+1⁄2 in) Route map 54°48′27″N 40°01′42″E / 54.80739°N 40.02821°E / 54.80739; 40.02821 The Solotchinskoye peat railway is located in Ryazan Oblast, Russia. The peat railway was opene...
لابيت الإحداثيات 37°13′49″N 95°11′02″W / 37.2303°N 95.1839°W / 37.2303; -95.1839 [1] تقسيم إداري البلد الولايات المتحدة[2] التقسيم الأعلى مقاطعة لابيت خصائص جغرافية المساحة 0.548592 كيلومتر مربع0.576795 كيلومتر مربع (1 أبريل 2010) ارتفاع 264 متر عدد السكان ...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2019) سعادة النائب محمد عيسى عضو مجلس النواب البحريني عن الدائرة الأولى في محافظة المحرق في المنصب2018 – 2022 العاهل حمد بن عيسى آل خليفة رئيس الوزراء خليفة بن سلمان آ...