Oocyte

Oocyte
Identifiers
MeSHD009865
FMA18644
Anatomical terminology

An oocyte (/ˈəst/, oöcyte, or ovocyte is a female gametocyte or germ cell involved in reproduction. In other words, it is an immature ovum, or egg cell. An oocyte is produced in a female fetus in the ovary during female gametogenesis. The female germ cells produce a primordial germ cell (PGC), which then undergoes mitosis, forming oogonia. During oogenesis, the oogonia become primary oocytes. An oocyte is a form of genetic material that can be collected for cryoconservation.

Formation

Diagram showing the reduction in number of the chromosomes in the process of maturation of the ovum; the process is known as meiosis.

The formation of an oocyte is called oocytogenesis, which is a part of oogenesis.[1] Oogenesis results in the formation of both primary oocytes during fetal period, and of secondary oocytes after it as part of ovulation.

Cell type ploidy/chromosomes chromatids Process Time of completion
Oogonium diploid/46(2N) 2C Oocytogenesis (mitosis) third trimester
primary Oocyte diploid/46(2N) 4C Ootidogenesis (meiosis I) (Folliculogenesis) Dictyate in prophase I for up to 50 years
secondary Oocyte haploid/23(1N) 2C Ootidogenesis (meiosis II) Halted in metaphase II until fertilization
Ootid haploid/23(1N) 1C Ootidogenesis (meiosis II) Minutes after fertilization
Ovum haploid/23(1N) 1C

Characteristics

Cytoplasm

Oocytes are rich in cytoplasm, which contains yolk granules to nourish the cell early in development.

Nucleus

During the primary oocyte stage of oogenesis, the nucleus is called a germinal vesicle.[2]

The only normal human type of secondary oocyte has the 23rd (sex) chromosome as 23,X (female-determining), whereas sperm can have 23,X (female-determining) or 23,Y (male-determining).

Nest

The space within an ovum or immature ovum is located is the cell-nest.[3]

Cumulus-oocyte complex

The cumulus-oocyte complex contains layers of tightly packed cumulus cells surrounding the oocyte in the Graafian follicle. The oocyte is arrested in Meiosis II at the stage of metaphase II at the diplotene stage and is considered a secondary oocyte. Before ovulation, the cumulus complex goes through a structural change known as cumulus expansion. The granulosa cells transform from tightly compacted to an expanded mucoid matrix. Many studies show that cumulus expansion is critical for the maturation of the oocyte because the cumulus complex is the oocyte's direct communication with the developing follicle environment. It also plays a significant role in fertilization, though the mechanisms are not entirely known and are species specific.[4][5][6]

Maternal contributions

diagram of an oocyte with its vegetal and animal hemispheres identified
Oocyte poles

In order for an oocyte to become fertilized and ultimately grow into a fully functioning organism, it must be able to regulate multiple cellular and developmental processes. The oocyte, a large and complex cell, must be able to direct the growth of the embryo and control cellular activities. As the oocyte is a product of female gametogenesis, the maternal contribution to the oocyte and consequently the newly fertilized egg, is enormous. There are many types of molecules that are maternally supplied to the oocyte, which will direct various activities within the growing zygote.

Avoidance of damage to germ-line DNA

The DNA of a cell is vulnerable to the damaging effect of oxidative free radicals produced as byproducts of cellular metabolism. DNA damage occurring in oocytes, if not repaired, can be lethal and result in reduced fecundity and loss of potential progeny. Oocytes are substantially larger than the average somatic cell, and thus considerable metabolic activity is necessary for their provisioning. If this metabolic activity were carried out by the oocyte's metabolic machinery, the oocyte genome would be exposed to the reactive oxidative by-products generated. Thus it appears that a process evolved to avoid this vulnerability of germline DNA. It was proposed that, in order to avoid damage to the DNA genome of the oocytes, the metabolism contributing to the synthesis of much of the oocyte's constituents was shifted to other maternal cells that then transferred these constituents to oocytes.[7][8] Thus, oocytes of many organisms are protected from oxidative DNA damage while storing up a large mass of substances to nurture the zygote in its initial embryonic growth.

mRNAs and proteins

During the growth of the oocyte, a variety of maternally transcribed messenger RNAs, or mRNAs, are supplied by maternal cells. These mRNAs can be stored in mRNP (message ribonucleoprotein) complexes and be translated at specific time points, they can be localized within a specific region of the cytoplasm, or they can be homogeneously dispersed within the cytoplasm of the entire oocyte.[9] Maternally loaded proteins can also be localized or ubiquitous throughout the cytoplasm. The translated products of the mRNAs and the loaded proteins have multiple functions; from regulation of cellular "house-keeping" such as cell cycle progression and cellular metabolism, to regulation of developmental processes such as fertilization, activation of zygotic transcription, and formation of body axes.[9] Below are some examples of maternally inherited mRNAs and proteins found in the oocytes of the African clawed frog.

Name Type of maternal molecule Localization Function
VegT[10] mRNA Vegetal hemisphere Transcription factor
Vg1[11] mRNA Vegetal hemisphere Transcription factor
XXBP-1[12] mRNA Not known Transcription factor
CREB[13] Protein Ubiquitous Transcription factor
FoxH1[14] mRNA Ubiquitous Transcription factor
p53[15] Protein Ubiquitous Transcription Factor
Lef/Tcf[16] mRNA Ubiquitous Transcription factor
FGF2[17] Protein Nucleus Not known
FGF2, 4, 9 FGFR1[16] mRNA Not known FGF signaling
Ectodermin[18] Protein Animal hemisphere Ubiquitin ligase
PACE4[19] mRNA Vegetal hemisphere Proprotein convertase
Coco[20] Protein Not known BMP inhibitor
Twisted gastrulation[16] Protein Not known BMP/Chordin binding protein
fatvg[21] mRNA Vegetal hemisphere Germ cell formation and cortical rotation
a diagram of the Xenopus laevis oocyte and its maternal determinants
Maternal determinants in Xenopus laevis oocyte

Mitochondria

The oocyte receives mitochondria from maternal cells, which will go on to control embryonic metabolism and apoptotic events.[9] The partitioning of mitochondria is carried out by a system of microtubules that will localize mitochondria throughout the oocyte. In certain organisms, such as mammals, paternal mitochondria brought to the oocyte by the spermatozoon are degraded through the attachment of ubiquitinated proteins. The destruction of paternal mitochondria ensures the strictly maternal inheritance of mitochondria and mitochondrial DNA (mtDNA).[9]

Nucleolus

In mammals, the nucleolus of the oocyte is derived solely from maternal cells.[22] The nucleolus, a structure found within the nucleus, is the location where rRNA is transcribed and assembled into ribosomes. While the nucleolus is dense and inactive in a mature oocyte, it is required for proper development of the embryo.[22]

Ribosomes

Maternal cells also synthesize and contribute a store of ribosomes that are required for the translation of proteins before the zygotic genome is activated. In mammalian oocytes, maternally derived ribosomes and some mRNAs are stored in a structure called cytoplasmic lattices. These cytoplasmic lattices, a network of fibrils, protein, and RNAs, have been observed to increase in density as the number of ribosomes decrease within a growing oocyte[23] and mutation in them have been linked to infertility.[24][25]

Prophase I arrest

Female mammals and birds are born possessing all the oocytes needed for future ovulations, and these oocytes are arrested at the prophase I stage of meiosis.[26] In humans, as an example, oocytes are formed between three and four months of gestation within the fetus and are therefore present at birth. During this prophase I arrested stage (dictyate), which may last for many years, four copies of the genome are present in the oocytes. The arrest of ooctyes at the four genome copy stage appears to provide the informational redundancy needed to repair damage in the DNA of the germline.[26] The repair process used likely involves homologous recombinational repair.[26][27][28] Prophase arrested oocytes have a high capability for efficient repair of DNA damages.[27] In particular, DNA double-strand breaks can be repaired during the period of prophase arrest by homologous recombinational repair and by non-homologous end joining.[29] DNA repair capability appears to be a key quality control mechanism in the female germ line and a critical determinant of fertility.[27]

Paternal contributions

The spermatozoon that fertilizes an oocyte will contribute its pronucleus, the other half of the zygotic genome. In some species, the spermatozoon will also contribute a centriole, which will help make up the zygotic centrosome required for the first division. However, in some species, such as in the mouse, the entire centrosome is acquired maternally.[30] Currently under investigation is the possibility of other cytoplasmic contributions made to the embryo by the spermatozoon.

During fertilization, the sperm provides three essential parts to the oocyte: (1) a signalling or activating factor, which causes the metabolically dormant oocyte to activate; (2) the haploid paternal genome; (3) the centrosome, which is responsible for maintaining the microtubule system. See anatomy of sperm

Abnormalities

See also

References

  1. ^ answers.com
  2. ^ "Germinal vesicle". Biology Articles, Tutorials & Dictionary Online. 2019-10-07. Retrieved 2022-04-09.
  3. ^ Grier HJ, Uribe MC, Parenti LR (April 2007). "Germinal epithelium, folliculogenesis, and postovulatory follicles in ovaries of rainbow trout, Oncorhynchus mykiss (Walbaum, 1792) (Teleostei, protacanthopterygii, salmoniformes)". Journal of Morphology. 268 (4): 293–310. doi:10.1002/jmor.10518. PMID 17309079. S2CID 23482731.
  4. ^ Yokoo M, Sato E (2004). "Cumulus-oocyte complex interactions during oocyte maturation". International Review of Cytology. 235: 251–91. doi:10.1016/S0074-7696(04)35006-0. ISBN 978-0-12-364639-2. PMID 15219785.
  5. ^ Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A (March 2002). "Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization". Molecular Reproduction and Development. 61 (3): 414–24. doi:10.1002/mrd.10102. PMID 11835587. S2CID 5728551.
  6. ^ Huang Z, Wells D (October 2010). "The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome". Molecular Human Reproduction. 16 (10): 715–25. doi:10.1093/molehr/gaq031. PMID 20435609.
  7. ^ Bernstein C (1993). "Sex as a response to oxidative DNA damage. Chapter 10". In Halliwell B, Aruoma OI (eds.). DNA and Free Radicals. Great Britain: Ellis Horwood Limited. pp. 204–205. ISBN 978-0-13-222035-4.
  8. ^ Bernstein C (1998). "Sex as a response to oxidative DNA damage. Chapter 4". In Aruoma OI, Halliwell B (eds.). DNA and Free Radicals: Techniques, Mechanisms & Applications. Saint Lucia and London: OICA International. pp. 112–113. ISBN 976-8056169.
  9. ^ a b c d Mtango NR, Potireddy S, Latham KE (2008). "Oocyte quality and maternal control of development". International Review of Cell and Molecular Biology. 268: 223–90. doi:10.1016/S1937-6448(08)00807-1. PMID 18703408.
  10. ^ Zhang J, King ML (December 1996). "Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning". Development. 122 (12): 4119–29. doi:10.1242/dev.122.12.4119. PMID 9012531. S2CID 28462527.
  11. ^ Heasman J, Wessely O, Langland R, Craig EJ, Kessler DS (December 2001). "Vegetal localization of maternal mRNAs is disrupted by VegT depletion". Developmental Biology. 240 (2): 377–86. doi:10.1006/dbio.2001.0495. PMID 11784070.
  12. ^ Zhao H, Cao Y, Grunz H (May 2003). "Xenopus X-box binding protein 1, a leucine zipper transcription factor, is involved in the BMP signaling pathway". Developmental Biology. 257 (2): 278–91. doi:10.1016/s0012-1606(03)00069-1. PMID 12729558.
  13. ^ Sundaram N, Tao Q, Wylie C, Heasman J (September 2003). "The role of maternal CREB in early embryogenesis of Xenopus laevis". Developmental Biology. 261 (2): 337–52. doi:10.1016/s0012-1606(03)00303-8. PMID 14499645.
  14. ^ Kofron M, Puck H, Standley H, Wylie C, Old R, Whitman M, Heasman J (October 2004). "New roles for FoxH1 in patterning the early embryo". Development. 131 (20): 5065–78. doi:10.1242/dev.01396. PMID 15459100.
  15. ^ Takebayashi-Suzuki K, Funami J, Tokumori D, Saito A, Watabe T, Miyazono K, et al. (September 2003). "Interplay between the tumor suppressor p53 and TGF beta signaling shapes embryonic body axes in Xenopus". Development. 130 (17): 3929–39. doi:10.1242/dev.00615. PMID 12874116.
  16. ^ a b c Heasman J (February 2006). "Maternal determinants of embryonic cell fate". Seminars in Cell & Developmental Biology. 17 (1): 93–8. doi:10.1016/j.semcdb.2005.11.005. PMID 16426874.
  17. ^ Song J, Slack JM (December 1994). "Spatial and temporal expression of basic fibroblast growth factor (FGF-2) mRNA and protein in early Xenopus development". Mechanisms of Development. 48 (3): 141–51. doi:10.1016/0925-4773(94)90055-8. PMID 7893598. S2CID 20281053.
  18. ^ Dupont S, Zacchigna L, Cordenonsi M, Soligo S, Adorno M, Rugge M, Piccolo S (April 2005). "Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase". Cell. 121 (1): 87–99. doi:10.1016/j.cell.2005.01.033. hdl:11577/2439217. PMID 15820681. S2CID 16628152.
  19. ^ Birsoy B, Berg L, Williams PH, Smith JC, Wylie CC, Christian JL, Heasman J (February 2005). "XPACE4 is a localized pro-protein convertase required for mesoderm induction and the cleavage of specific TGFbeta proteins in Xenopus development". Development. 132 (3): 591–602. doi:10.1242/dev.01599. PMID 15634697.
  20. ^ Bell E, Muñoz-Sanjuán I, Altmann CR, Vonica A, Brivanlou AH (April 2003). "Cell fate specification and competence by Coco, a maternal BMP, TGFbeta and Wnt inhibitor". Development. 130 (7): 1381–9. doi:10.1242/dev.00344. PMID 12588853.
  21. ^ Chan AP, Kloc M, Larabell CA, LeGros M, Etkin LD (May 2007). "The maternally localized RNA fatvg is required for cortical rotation and germ cell formation". Mechanisms of Development. 124 (5): 350–63. doi:10.1016/j.mod.2007.02.001. PMC 2435194. PMID 17376659.
  22. ^ a b Ogushi S, Palmieri C, Fulka H, Saitou M, Miyano T, Fulka J (February 2008). "The maternal nucleolus is essential for early embryonic development in mammals". Science. 319 (5863): 613–6. doi:10.1126/science.1151276. PMID 18239124. S2CID 7799743.
  23. ^ Yurttas P, Vitale AM, Fitzhenry RJ, Cohen-Gould L, Wu W, Gossen JA, Coonrod SA (August 2008). "Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo". Development. 135 (15): 2627–36. doi:10.1242/dev.016329. PMC 2708103. PMID 18599511.
  24. ^ Jentoft, Ida M.A.; Bäuerlein, Felix J.B.; Welp, Luisa M.; Cooper, Benjamin H.; Petrovic, Arsen; So, Chun; Penir, Sarah Mae; Politi, Antonio Z.; Horokhovskyi, Yehor; Takala, Iina; Eckel, Heike; Moltrecht, Rüdiger; Lénárt, Peter; Cavazza, Tommaso; Liepe, Juliane (November 2023). "Mammalian oocytes store proteins for the early embryo on cytoplasmic lattices". Cell. 186 (24): 5308–5327.e25. doi:10.1016/j.cell.2023.10.003. PMID 37922900.
  25. ^ Vaidyanathan, Gayathri (2023-11-02). "New explanation for infertility: eggs lacking a mysterious 'lattice'". Nature. doi:10.1038/d41586-023-03415-6. PMID 37919411. S2CID 264972543.
  26. ^ a b c Mira A (September 1998). "Why is meiosis arrested?". Journal of Theoretical Biology. 194 (2): 275–87. Bibcode:1998JThBi.194..275M. doi:10.1006/jtbi.1998.0761. PMID 9778439.
  27. ^ a b c Stringer JM, Winship A, Zerafa N, Wakefield M, Hutt K (May 2020). "Oocytes can efficiently repair DNA double-strand breaks to restore genetic integrity and protect offspring health". Proceedings of the National Academy of Sciences of the United States of America. 117 (21): 11513–11522. Bibcode:2020PNAS..11711513S. doi:10.1073/pnas.2001124117. PMC 7260990. PMID 32381741.
  28. ^ He, Da-Jian; Wang, Lin; Zhang, Zhi-Bi; Guo, Kun; Li, Jing-Zheng; He, Xie-Chao; Cui, Qing-Hua; Zheng, Ping (2018-11-18). "Maternal gene Ooep may participate in homologous recombination-mediated DNA double-strand break repair in mouse oocytes". Zoological Research. 39 (6): 387–395. doi:10.24272/j.issn.2095-8137.2018.067. PMC 6085769. PMID 29955025.
  29. ^ Leem J, Lee C, Choi DY, Oh JS. Distinct characteristics of the DNA damage response in mammalian oocytes. Exp Mol Med. 2024 Feb 14. doi:10.1038/s12276-024-01178-2. Epub ahead of print. PMID 38355825
  30. ^ Sutovsky P, Schatten G (2000). "Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion". International Review of Cytology. 195: 1–65. doi:10.1016/s0074-7696(08)62703-5. ISBN 978-0-12-364599-9. PMID 10603574.

Sources

  • Purves WK, Orians GH, Sadava D, Heller HC (2004). Life: The Science of Biology (7th ed.). Freeman, W. H. & Company. pp. 823–824. ISBN 978-0-7167-9856-9.
Preceded by
None
Stages of human development
Sperm + Oocyte
Succeeded by

Read other articles:

Ini adalah nama Batak Toba, marganya adalah Lumban Gaol. Carles Arianto Lumban Gaol Danbrigif-3 Marinir Informasi pribadiLahir27 September 1977 (umur 46)Nainggolan, Kabupaten Samosir, Sumatera UtaraAlma materAkademi Angkatan Laut (1999)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan LautMasa dinas1999–sekarangPangkat KolonelNRP14445/PSatuanKorps Marinir (Taifib)Sunting kotak info • L • B Kolonel (Mar) Carles Arianto Lumban Gaol, (lahir 27 September 1977) ...

 

Carl AuenLahir(1892-02-16)16 Februari 1892Düsseldorf, Provinsi Rhein, Kekaisaran JermanMeninggal23 Juni 1972(1972-06-23) (umur 80)Berlin, JermanPekerjaanPemeranTahun aktif1914–1938 Carl Theodor Auen (16 Februari 1892 – 23 Juni 1972) adalah seorang pemeran film Jerman pada masa film bisu. Ia tampil dalam 119 film sejak tahun 1914 hingga 1938. Auen merupakan anggota Kampfbund für deutsche Kultur (KfdK) dan juga menjadi Dewan Penasihat (Präsidialrat) bagi presiden...

 

Bank makanan di Johor, Malaysia Bank makanan (Inggris: food bank) adalah tempat di mana makanan ditawarkan kepada badan-badan nirlaba untuk dibagikan kepada orang tidak mampu secara cuma-cuma (dengan syarat kerja sukarela). Bank makanan biasanya mendapat makanan dari toko serba ada dan sumbangan dari masyarakat, biasanya menjelang liburan Thanksgiving. Selain itu pemerintah AS dan negara bagian sering menyumbangkan sisa dari USDA. Bank makanan yang merupakan anggota America's Second Harvest m...

الدوري المنغولي لكرة القدم 2000 تفاصيل الموسم الدوري المنغولي لكرة القدم  البلد منغوليا  البطل نادي إركيم  الدوري المنغولي لكرة القدم 1999  الدوري المنغولي لكرة القدم 2001  تعديل مصدري - تعديل   الدوري المنغولي لكرة القدم 2000 هو موسم من الدوري المنغولي لكرة القدم. �...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مارس 2018) مقاطعة ويستون    علم   الإحداثيات 43°50′N 104°34′W / 43.84°N 104.56°W / 43...

 

Insiden penerbangan udara TuszynDua pesawat Li-2s, serupa dengan insiden kecelakaan pesawat, di Warsaw Chopin Airport pada 1947.Ringkasan insiden udaraTanggal15 November 1951RingkasanKegagalan mesin, kehilangan kendaliLokasiTuszyn, PolandKoordinat: 51°34′49″N 19°30′24″E / 51.58028°N 19.50667°E / 51.58028; 19.50667Penumpang15Awak3Cedera0Tewas18Selamat0Jenis pesawatLisunov Li-2OperatorLOT Polish AirlinesRegistrasiSP-LKAAsalLublinek AirportTujuanJohn Paul...

CFR 1907 ClujCalcio Feroviarii (Ferrovieri) Segni distintivi Uniformi di gara Casa Trasferta Terza divisa Colori sociali Bordeaux, bianco Simboli Locomotiva Inno Imn CFRDesperado Dati societari Città Cluj-Napoca Nazione  Romania Confederazione UEFA Federazione FRF Campionato Liga I Fondazione 1907 Presidente Cristian Balaj Allenatore Ovidiu Hoban (ad interim) Stadio Stadio Constantin Rădulescu(23 500 posti) Sito web www.cfr1907.ro Palmarès Titoli nazionali 8 Campionati rumeni Tr...

 

Cet article est une ébauche concernant une chanson, le Concours Eurovision de la chanson et le Royaume-Uni. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. I'm Never Giving Up Chanson de Sweet Dreams au Concours Eurovision de la chanson 1983 Sortie mars 1983 Langue Anglais Compositeur Ron Roker, Jan Pulsford et Phil Wigger Chansons représentant le Royaume-Uni au Concours Eurovision de la chanson One Step ...

 

República Democrática del Congo en los Juegos Olímpicos Bandera de República Democrática del CongoCódigo COI ZAICON Comité Olímpico CongoleñoJuegos Olímpicos de Los Ángeles 1984Deportistas 8 en 2 deportesAbanderado Christine BakomboMedallas 0 0 0 0 Historia olímpicaJuegos de verano 1968 • 1972 • 1976 • 1980 • 1984* • 1988* • 1992* • 1996* • 2000 • 2004 • 2008 ...

Japanese manga series by Hiro Mashima Edens ZeroFirst volume of Edens Zero, released by Kodansha on September 14, 2018, in JapanGenreAdventure[1]Science fantasy[2] MangaWritten byHiro MashimaPublished byKodanshaEnglish publisherNA: Kodansha USAImprintShōnen Magazine ComicsMagazineWeekly Shōnen MagazineDemographicShōnenOriginal runJune 27, 2018 – June 26, 2024[3]Volumes31 (List of volumes) Anime television seriesDirected byShinji Ishihira (Chief)Yūj...

 

Episode from the Gospel of John For other uses, see Doubting Thomas (disambiguation). The Incredulity of Saint Thomas by Caravaggio, c. 1602 A doubting Thomas is a skeptic who refuses to believe without direct personal experience – a reference to the Gospel of John's depiction of the Apostle Thomas, who, in John's account, refused to believe the resurrected Jesus had appeared to the ten other apostles until he could see and feel Jesus's crucifixion wounds. In art, the episode (formally call...

 

Philosophical study of value Part of a series onPhilosophy Philosophy portal Contents Outline Lists Glossary History Categories Disambiguation Philosophies By period Ancient Ancient Egyptian Ancient Greek Medieval Renaissance Modern Contemporary Analytic Continental By region African Egypt Ethiopia South Africa Eastern philosophy Chinese Indian Indonesia Japan Korea Vietnam Indigenous American Aztec philosophy Middle Eastern philosophy Iranian Western American British French German Italia...

Radio station facility Radio tower and mast Radio mast The Richtfunkstelle Berlin-Frohnau (Directional radio station Berlin-Frohnau) was a facility for directional radio services in Frohnau (a locality in the Reinickendorf borough of Berlin; during the Cold War, the northernmost locality of West Berlin). Before German reunification, the facility served as a microwave transmission link between West Berlin and West Germany. It first used only an overhorizon directional link. For this link betwe...

 

Voce principale: Coppa Intercontinentale. Coppa Intercontinentale 2016 Competizione Coppa Intercontinentale Sport hockey su pista Edizione 16ª Luogo  Spagna Partecipanti 2 Sede finale Vic Risultati Vincitore  Vic Finalista  Huracán Statistiche Incontri disputati 1 Gol segnati 6 (6 per incontro) Cronologia della competizione 2014 2017 Manuale La Coppa Intercontinentale 2016 è stata la 16ª edizione dell'omonima competizione di hockey su pista riservata alle squadre di c...

 

1934 novel by Freeman Wills Crofts This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The 12.30 from Croydon – news · newspapers · books · scholar · JSTOR (March 2019) (Learn how and when to remove this message) The 12.30 from Croydon First editionAuthorFreeman Wills CroftsLanguageEnglishSeriesInspector FrenchGenreMysteryPublish...

1998 United States Senate elections ← 1996 November 3, 1998 2000 → 34 of the 100 seats in the United States Senate51 seats needed for a majority   Majority party Minority party   Leader Trent Lott Tom Daschle Party Republican Democratic Leader since June 12, 1996 January 3, 1995 Leader's seat Mississippi South Dakota Seats before 55 45 Seats after 55 45 Seat change Popular vote 25,346,613 26,768,699 Percentage 46.8% 49.5% Swing 2....

 

German recording studio Hansa StudiosFacade on Köthener StrasseAddressKöthener Strasse 38, Berlin 10963, GermanyLocationBerlinCoordinates52°30′23.2″N 13°22′38.97″E / 52.506444°N 13.3774917°E / 52.506444; 13.3774917Typerecording studioConstructionBuilt1913Opened1962Websitehansastudios.de/en/home/ Hansa Tonstudio is a recording studio located in the Kreuzberg district of Berlin, Germany.[1] The studio, famous for its Meistersaal recording hall, is s...

 

Il massaggioAutoreÉdouard Debat-Ponsan Data1883 Tecnicaolio su tela Dimensioni127×210 cm UbicazioneMusée des Augustins, Tolosa Il massaggio all'hammam[1] o Il massaggio[2] (Le Massage, scène de Hammam) è un dipinto a olio su tela realizzato dall'artista francese Édouard Debat-Ponsan nel 1883 ed esposto al musée des Augustins di Tolosa.[3] Indice 1 Storia 2 Descrizione 3 Analisi 4 Note 5 Altri progetti Storia Dipinta nel 1883, di ritorno da un viaggio nella ...

Un Beriev A-50 de la Fuerza Aérea India Un sistema de alerta temprana y control aerotransportado, o AEW&C (acrónimo en inglés de Airborne Early Warning and Control),[1]​ es un sistema de radar aerotransportado diseñado para detectar aeronaves. Usados a gran altura, los radares permiten a los operadores distinguir entre aeronaves amigas u hostiles a cientos de kilómetros de distancia. Los aviones AEW&C pueden ser usados para operaciones aéreas tanto defensivas como ofensiva...

 

「斎藤安雄」とは別人です。 ウラジミール・プーチンとの信任状奉呈式に臨む齋藤泰雄(右)(2006年7月) 齋藤 泰雄(さいとう やすお、1948年(昭和23年)1月5日 - )は、日本の外交官。元・フランス国駐箚特命全権大使。日本オリンピック委員会副会長。 経歴 岡山県出身。金光学園中学校・高等学校から東京大学法学部へ進学[1]。東京大学在学中の1970年(昭和...