October 1949 lunar eclipse

October 1949 lunar eclipse
Total eclipse
The Moon's hourly motion shown right to left
DateOctober 7, 1949
Gamma−0.3219
Magnitude1.2236
Saros cycle126 (42 of 72)
Totality72 minutes, 50 seconds
Partiality222 minutes, 53 seconds
Penumbral369 minutes, 11 seconds
Contacts (UTC)
P123:51:50
U11:04:59
U22:20:01
Greatest2:56:26
U33:32:51
U44:47:52
P46:01:02

A total lunar eclipse occurred at the Moon’s ascending node of orbit on Friday, October 7, 1949,[1] with an umbral magnitude of 1.2236. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring only about 15 hours before apogee (on October 7, 1949, at 18:10 UTC), the Moon's apparent diameter was smaller.[2]

This lunar eclipse was the second of a tetrad, with four total lunar eclipses in series, the others being on April 13, 1949; April 2, 1950; and September 26, 1950.

Visibility

The eclipse was completely visible over eastern North America, South America, and west Africa, and western Europe, seen rising over western North America and the eastern Pacific Ocean and setting over much of Africa, Europe, and west, central, and south Asia.[3]

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

October 7, 1949 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 2.31179
Umbral Magnitude 1.22363
Gamma −0.32191
Sun Right Ascension 12h49m43.2s
Sun Declination -05°20'02.0"
Sun Semi-Diameter 16'00.3"
Sun Equatorial Horizontal Parallax 08.8"
Moon Right Ascension 00h50m16.7s
Moon Declination +05°04'46.9"
Moon Semi-Diameter 14'42.5"
Moon Equatorial Horizontal Parallax 0°53'58.9"
ΔT 29.0 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of October 1949
October 7
Ascending node (full moon)
October 21
Descending node (new moon)
Total lunar eclipse
Lunar Saros 126
Partial solar eclipse
Solar Saros 152

Eclipses in 1949

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 126

Inex

Triad

Lunar eclipses of 1948–1951

Lunar eclipse series sets from 1947–1951
Descending node   Ascending node
Saros Date
viewing
Type
chart
Saros Date
viewing
Type
chart
111 1948 Apr 23
Partial
116 1948 Oct 18
Penumbral
121 1949 Apr 13
Total
126 1949 Oct 07
Total
131 1950 Apr 02
Total
136 1950 Sep 26
Total
141 1951 Mar 23
Penumbral
146 1951 Sep 15
Penumbral

Saros 126

It is part of saros series 126.

Lunar saros series 126, repeating every 18 years and 11 days, has a total of 70 lunar eclipse events including 14 total lunar eclipses. Solar Saros 133 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

First penumbral lunar eclipse: 18 July 1228

First partial lunar eclipse: 24 March 1625

First total lunar eclipse: 19 June 1769

First central lunar eclipse: 11 July 1805

Greatest eclipse of the lunar saros 126: 13 August 1859, lasting 106 minutes.

Last central lunar eclipse: 26 September 1931

Last total lunar eclipse: 9 November 2003

Last partial lunar eclipse: 5 June 2346

Last penumbral lunar eclipse: 19 August 2472

1901-2100

15 September 1913

26 September 1931

7 October 1949

18 October 1967

28 October 1985

9 November 2003

19 November 2021

30 November 2039

11 December 2057

22 December 2075

1 January 2094


Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[5] This lunar eclipse is related to two total solar eclipses of Solar Saros 133.

October 1, 1940 October 12, 1958

See also

Notes

  1. ^ "October 6–7, 1949 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 21 December 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 21 December 2024.
  3. ^ "Total Lunar Eclipse of 1949 Oct 07" (PDF). NASA. Retrieved 21 December 2024.
  4. ^ "Total Lunar Eclipse of 1949 Oct 07". EclipseWise.com. Retrieved 21 December 2024.
  5. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros