Nuclear microreactor

Russian nuclear microreactor Shelf-M.

A nuclear microreactor is a plug-and-play type of nuclear reactor which can be easily assembled and transported by road, rail or air.[1] Microreactors are 100 to 1,000 times smaller than conventional nuclear reactors, and range in capacity from 1 to 20 MWe (megawatts of electricity), compared to 20 to 300 MWe (megawatts of electricity) for small modular reactors (SMRs).[2] Due to their size, they can be deployed to locations such as isolated military bases or communities affected by natural disasters. It can operate as part of the grid, independent of the grid, or as part of a small grid for electricity generation and heat treatment.[3] They are designed to provide resilient, non-carbon emitting, and independent power in challenging environments.[4] The nuclear fuel source for the majority of the designs is "High-Assay Low-Enriched Uranium", or HALEU.[5]

History

Nuclear microreactors originated in the United States Navy's nuclear submarine project, which was first proposed by Ross Gunn of United States Naval Research Laboratory in 1939.[6] The concept was adapted by Admiral Hyman Rickover to start American nuclear submarine program in 1950s. The first US nuclear submarine to be constructed was the USS Nautilus, which was launched in 1955. It was installed with Westinghouse's S2W reactor - a pressurized water type reactor which gave out 10 megawatts output.[7]

Design

These reactors are made to fit in small areas where it would be inefficient to introduce a larger power plant, but still has energy needs unsuitable for generators. Nuclear microreactors, a subcategory of Small Modular Reactors (SMRs), are a developing type of nuclear power plant that is designed to generate electricity on a smaller scale than traditional nuclear reactors. These microreactors typically have a capacity of 20 megawatts or less and are designed to be modular and transportable, making them suitable for powering small communities, remote areas, and industries such as desalinization and hydrogen fuel production.[8]

One of the primary advantages of nuclear microreactors is that they have a lower environmental impact than fossil fuels. They emit no greenhouse gases such as CO2 and methane. The waste they produce is radioactive however, creating an issue of safe handling and disposal. One of the current methods of disposal is burying waste in deep underground storage facilities such as Onkalo, located in Finland.[9] In addition, they can operate continuously for up to 10 years without the need for refueling.[10]

Microreactors use nuclear fission to generate heat, which is then used to produce electricity through a steam turbine. The reactor core is surrounded by a thick shield to protect workers and the environment from radiation. The core also contains fuel rods that contain uranium or other fissile materials. As the fuel undergoes fission, it releases energy in the form of heat, which is then transferred to a coolant that circulates through the reactor. The coolant is typically water or a liquid metal, such as sodium or lead, which absorbs the heat and transfers it to a heat exchanger. The heat exchanger then transfers the heat to a secondary coolant, which is used to generate steam and produce electricity.[11]

Microreactors and SMRs reflect a wide range of technologies, including light-water reactors (LWRs), high-temperature gas reactors (HTGRs), and advanced reactor designs, such as liquid metal fast reactors (FRs), molten salt reactors (MSRs) and heat pipe (HP) reactors. Designs can vary based on fuel, materials, refrigerants, inverters, manufacturing techniques (such as additive manufacturing), and heat exchangers.[12]

Heat pipe reactor design is the simplest microreactor, which improves power transfer and avoids the use of pumps to circulate the coolant. Microreactors based on HTGR technology use a three-structure isotropic (TRISO) fuel, the same as that used in larger HTGR designs. For FR technologies that provide compactness and energy efficiency, proven oxide fuels, more experimental metals or nitride fuels are available. The experimental fuel is expected to be more efficient for microreactors, as the residence time of the fuel in the reactor core is much longer than in conventional reactors, leading to higher radiation exposure.[12]

One of the key features of nuclear microreactors is their small size and modularity. SMRs can be built in factories and shipped to their final destination, reducing construction costs and time. They can be installed underground, underwater, or in other remote locations, making them ideal for powering small communities, industrial sites, military installations, and other specialized locations. In addition, the modular design allows for easy scalability, allowing additional microreactors to be added to increase power output as needed.[3]

The environmental impact of reducing greenhouse gases and the capability of outputting low powers of less than 100 MWth have caused global interest in nuclear microreactors, which could potentially benefit companies with lower control necessities. Additional benefits could include expanded adaptability with regard to siting, progressed security execution; diminished development times; and decreased forthright venture necessities.[13]

Challenges

Despite these advantages, nuclear microreactors still face challenges. One of the primary challenges is regulatory approval. SMRs must undergo extensive testing and certification before they can be deployed, and many countries have strict regulations in place to govern the use of SMRs such as those given by the U.S. Nuclear Regulatory Commission (NRC).[14] The most profound issue for microreactors is the cost per kWh, as microreactors lose the power-of-scale advantages for economic efficiency. Design, operation and maintenance costs can make these low-power nuclear reactors prohibitively expensive.[13] Economic analysis shows that despite lower capital costs, microreactors cannot compete in cost with large nuclear power plants due to economies of scale. Still, they can compete with technologies of similar size and application, such as diesel generators in small networks and renewable energies.[3]

In addition, public perception of nuclear energy is often negative, with concerns about safety and nuclear waste disposal. The availability of High Assay Low-Enriched Uranium (HALEU) fuel on the commercial market is low, posing an issue to the viability of operating microreactors even if regulatory approval is attained. Other issues include the higher safety and proliferation risks compared to large nuclear power plants and the licensing requirements for small reactors that have yet to be established.[3] Also, the smaller size of a nuclear microreactor, and its use of HALEU fuels also puts it at increased risk for theft. The uranium in a nuclear microreactor is easier to convert to weapons-grade, which makes it an ideal asset for nuclear terrorism and proliferation.[15]

Current development

Microreactors for civilian use are currently in the earliest stages of development, with individual designs ranging in various stages of maturity. The United States has been supporting the development of any form of small or medium reactors (SMRs) since 2012. The present work focuses on the feasibility of combining coolants commonly considered for fast reactor applications, such as sodium, molten salt, and lead-based coolants, with intermediates and special attention to molten salt, from a basic design perspective. Future work focuses on optimizing the basic design and performing coupled 3D calculations, like thermohydraulics, fuel performance, and neutronics to determine detailed behavior and operation.[13]

As of 2010, there has also been a growing interest in mobile floating nuclear power plants, considered to be nuclear microreactors. Two recent notable examples are: The Russian plant Akademik Lomonosov, which utilizes two 35 MWe reactors, and the Chinese plant ACPR50S, which utilizes a 60 MWe reactor, classified as a marine pressurized water reactor. In addition to the Akademik Lomonosov plant, several new designs of autonomous power sources are being studied in Russia.[13]

In 2018, NASA successfully demonstrated a kilowatt-scale microreactor based on its Kilopower technology.[16][17] It is being developed for supporting human exploration of the Moon and Mars missions.[18] It uses a unique technological approach to cool the reactor core (which is about the size of a paper towel roll): airtight heat pipes transfer reactor heat to engines that convert the heat to electricity.[19] The approach to discovering the coolant fuel used for reactor cores was found through a series of scoping calculations, which utilize reactor vessel and internal dimensions, followed by calculating vibrations and hypothetical core-disruptive accidents.[13]

In April 2022, the US Department of Defense announced its approval of Project Pele, an initiative to lower carbon emissions by the DOD by investing in nuclear technologies. The project has a budget of $300 million to develop a miniaturized reactor capable of generating 1.5 megawatts for a minimum of three years.[20] The US Department of Strategic Capabilities partnered with BWXT Technologies in June 2022 to accomplish this. BWXT Tech developed a high-temperature gas-cooled reactor (HTGR) which will generate between 1 and 5 MWe and will be transportable in shipping containers. It will be powered by TRISO fuel, a specific design of high-assay low-enriched uranium (HALEU) fuel that can withstand high temperatures and has relatively low environmental risks.[21]

The US Department of Energy DOE is also currently planning on developing a 100 kWt reactor in Idaho called the "Microreactor Applications Research Validation and Evaluation" (MARVEL) reactor.[22]

The US Department of Defense anticipates deadlines and challenges for the deployment of the first small reactor by the end of 2027. The nominal time from license application to commercialization is estimated at 7 years.[3]

References

  1. ^ "What is a Nuclear Microreactor?". Energy.gov. Retrieved 2020-11-21.
  2. ^ "Microreactors". Idaho National Laboratory. Retrieved 2020-11-21.
  3. ^ a b c d e Testoni, Raffaella; Bersano, Andrea; Segantin, Stefano (2021-08-01). "Review of nuclear microreactors: Status, potentialities and challenges". Progress in Nuclear Energy. 138: 103822. Bibcode:2021PNuE..13803822T. doi:10.1016/j.pnucene.2021.103822. ISSN 0149-1970.
  4. ^ Office, U. S. Government Accountability (2020-02-26). "Science & Tech Spotlight: Nuclear Microreactors" (GAO-20-380SP). {{cite journal}}: Cite journal requires |journal= (help)
  5. ^ "What is High-Assay Low-Enriched Uranium (HALEU)?". Office of Nuclear Energy. April 7, 2020. Retrieved 2022-04-26.
  6. ^ "The Little Book of Big Achievements" (PDF). United States Naval Research Laboratory. 2000. Archived from the original (PDF) on 2013-05-10.
  7. ^ "Nautilus: The First Nuclear Submarine". large.stanford.edu. Retrieved 2020-11-21.
  8. ^ "Microreactors". INL. Retrieved 2023-04-30.
  9. ^ "Posiva - Repository in ONKALO". www.posiva.fi. Retrieved 2023-04-30.
  10. ^ "What is a Nuclear Microreactor?". Energy.gov. Retrieved 2023-04-30.
  11. ^ "Microreactor AGile Non-Nuclear Experimental Testbed (MAGNET)". INL. Retrieved 2023-04-30.
  12. ^ a b Black, G.; Shropshire, D.; Araújo, K.; van Heek, A. (2023-01-31). "Prospects for Nuclear Microreactors: A Review of the Technology, Economics, and Regulatory Considerations". Nuclear Technology. 209 (sup1): S1 – S20. Bibcode:2023NucTe.209S...1B. doi:10.1080/00295450.2022.2118626. ISSN 0029-5450. S2CID 252613488.
  13. ^ a b c d e Peakman, Aiden; Hodgson, Zara; Merk, Bruno (2018-08-01). "Advanced micro-reactor concepts". Progress in Nuclear Energy. 107: 61–70. Bibcode:2018PNuE..107...61P. doi:10.1016/j.pnucene.2018.02.025. ISSN 0149-1970. S2CID 125222876.
  14. ^ "Federal Register, Volume 59 Issue 27 (Wednesday, February 9, 1994)". www.govinfo.gov. Retrieved 2023-04-30.
  15. ^ https://www.gao.gov/assets/gao-20-380sp.pdf
  16. ^ "NASA TechPort - Project Data". techport.nasa.gov. Retrieved 2020-11-21.
  17. ^ Potter, Sean (2018-05-02). "Demonstration Proves Nuclear Fission Can Provide Exploration Power". NASA. Retrieved 2020-11-21.
  18. ^ "NASA Technical Reports Server (NTRS)". ntrs.nasa.gov. 4 March 2017. Retrieved 2020-11-21.
  19. ^ "Tiny Nuclear Reactors Could Transform Power Generation for Remote Communities and Military Sites… and Missions to Mars". EPRI Journal. 2019-06-20. Retrieved 2020-11-21.
  20. ^ "DoD to Build Project Pele Mobile Microreactor and Perform Demonstration at Idaho National". U.S. Department of Defense. Retrieved 2023-04-30.
  21. ^ "BWX Technologies, Inc. | People Strong, Innovation Driven". www.bwxt.com. Retrieved 2023-04-30.
  22. ^ "Small nuclear power reactors - World Nuclear Association".


Read other articles:

Sekitar Kawah Darajat dilihat dari Darajat Pass Kawah Darajat merupakan lokasi pegunungan di Desa Padawaas, Kecamatan Pasirwangi Garut.[1] Ketinggian rata – rata Kawah Darajat ini adalah 1920 meter di atas permukaan laut, dengan konfigurasi umum lahan yang berbukit dan berlembah dengan tingkat kemiringan lahan yang agak curam dan stabilitas tanah yang cukup baik serta daya serap tanah yang cukup. Kawah Darajat Tempat ditemukannya sumber panas bumi yang saat ini dijadikan Pembangkit ...

 

 

Strada statale 652di Fondo Valle SangroDenominazioni precedentiStrada a scorrimento veloce di fondo Valle Sangro LocalizzazioneStato Italia Regioni Molise Abruzzo Province Isernia L'Aquila Chieti DatiClassificazioneStrada statale InizioSS 158 presso Cerro al Volturno FineSS 16 presso Fossacesia Marina Lunghezza81,300[1] km Data apertura1989 Provvedimento di istituzioneD.M. 462 del 22/07/1989 - G.U. 232 del 04/10/1989[2] GestoreANAS (1989-) Percors...

 

 

NASA satellite of the Explorer program Wilkinson Microwave Anisotropy ProbeWilkinson Microwave Anisotropy Probe (WMAP) satelliteNamesExplorer 80MAPMicrowave Anisotropy ProbeMIDEX-2WMAPMission typeCosmic microwave background AstronomyOperatorNASACOSPAR ID2001-027A SATCAT no.26859Websitehttp://map.gsfc.nasa.gov/Mission duration27 months (planned)9 years (achieved)[1] Spacecraft propertiesSpacecraftExplorer LXXXSpacecraft typeWilkinson Microwave Anisotropy ProbeBusWMAPManufacturerNRAOLau...

Bagian dari seri PolitikBentuk dasar dari pemerintahan Struktur kekuatan Konfederasi Federasi Hegemoni Kerajaan Negara kesatuan Sumber kekuatan Demokrasi Langsung Perwakilan Semi lainnya Kerajaan Mutlak Konstitusi Oligarki Aristokrasi Junta militer Kleptokrasi Plutokrasi Stratokrasi Timokrasi Otokrasi Otoritarianisme Despotisme Diktatur (Kediktatoran) Totalitarianisme Republik Parlementer Presidensial Semi presidensial Lainnya Anarki Anokrasi Khilafah Kritarsi Meritokrasi Oklokrasi Parti...

 

 

IshqbaaazNama alternatifIshqbaaaz: Pyaar Ki Ek Dhinchak KahaaniGenreDramaKomedi romantisMisteri[1]PembuatGul KhanDitulis olehFaizal AktharAnand JainHarneet SinghDivy SharmaAparajita SharmaMrinal JhaAbhijit SinhaSutradaraLalit MohanPemeranNakuul MehtaSurbhi ChandnaKunal JaisinghShrenu ParikhLeenesh MattooMansi SrivastavaNiti TaylorPenata musikSanjeev SrivastavaNegara asalIndiaBahasa asliHindiJmlh. musim2Jmlh. episode758ProduksiProduser eksekutifGorky MProduserGul KhanKarishma Bh...

 

 

SaintsMenodora, Metrodora, and NymphodoraMartyrsBornBithynia in Asia Minor(modern-day Anatolia, Turkey)Diedc. AD 305–311Asia Minor(modern-day Turkey)Venerated inCatholic ChurchEastern Orthodox ChurchCanonizedPre-CongregationFeastSeptember 10 or September 23 Menodora, Metrodora, and Nymphodora (died c. AD 305–311) are virgin martyrs venerated by the Roman Catholic and Eastern Orthodox churches. According to tradition, the three women were sisters from Bithynia in...

Artikel ini bukan mengenai Emma Watson. Emily WatsonOBEWatson (2013)LahirEmily Margaret Watson14 Januari 1967 (umur 57)Islington, London, InggrisTempat tinggalGreenwich, LondonAlmamaterUniversitas BristolDrama Studio LondonPekerjaanPemeranTahun aktif1991–sekarangSuami/istriJack Waters ​(m. 1995)​Anak2 Emily Margaret Watson, OBE (lahir 14 Januari 1967) adalah seorang pemeran asal Inggris. Ia dinominasikan untuk Penghargaan Akademi untuk Aktris Terbaik u...

 

 

For other uses, see Apure (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Apure – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this template message) You can help expand this article with text translated from the corresponding article in Spanish. ...

 

 

Cet article concerne la langue polonaise. Pour le peuple polonais, voir Polonais (peuple). PolonaisPolski Pays Allemagne, Bélarus, Pologne, Lituanie, Tchéquie, Ukraine Nombre de locuteurs 55 millions (2020)[1] (natifs) Pologne 37 815 606[2] États-Unis 560 496[3] Royaume-Uni 546 000[4]France 500 003[réf. nécessaire] Biélorussie 294 549[5] Allemagne 241 000[6] Lituanie 200 317[7] Canada 191 770[8] Israël 100 000[réf...

Brazzaville Mfa, KintamoPemandangan Brazzaville di sepanjang Sungai Kongo yang berseberangan dengan Kinshasa, Republik Demokratik KongoBrazzavillePeta Republik Kongo yang menunjukkan Brazzaville.Koordinat: 4°16′S 15°17′E / 4.267°S 15.283°E / -4.267; 15.283Negara Republik KongoDistrik ibu kotaBrazzavillePemerintahan • MayorDieudonné BantsimbaLuas • Kota100 km2 (40 sq mi)Ketinggian320 m (1,050 ft)Populasi...

 

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

 

Artikel ini perlu diterjemahkan dari bahasa Inggris ke bahasa Indonesia. Artikel ini ditulis atau diterjemahkan secara buruk dari Wikipedia bahasa Inggris. Jika halaman ini ditujukan untuk komunitas bahasa Inggris, halaman itu harus dikontribusikan ke Wikipedia bahasa Inggris. Lihat daftar bahasa Wikipedia. Artikel yang tidak diterjemahkan dapat dihapus secara cepat sesuai kriteria A2. Jika Anda ingin memeriksa artikel ini, Anda boleh menggunakan mesin penerjemah. Namun ingat, mohon tidak men...

Former bridge (1881–1958) Putnam BridgeCoordinates40°49′56″N 73°56′04″W / 40.83222°N 73.93444°W / 40.83222; -73.93444CarriesPutnam Division (1881–1918)9th Avenue El (1918–1940)Polo Grounds Shuttle (1940–1958)CrossesHarlem RiverLocaleManhattan and the Bronx, New York CityCharacteristicsDesignSwing bridgeTotal length1,004.4 feet (306.1 m)Width40 feet (12.19 m) including walkwaysLongest span297 ft 8+3⁄8 in (90.74&#...

 

 

Questa voce sugli argomenti politici maldiviani e sovrani è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Muhammad Fareed DidiSultano delle MaldiveStemma In carica7 marzo 1954 - 11 novembre 1968 PredecessoreIbrahim Muhammad Didi(presidente ad interim delle Maldive) SuccessoreIbrahim Nasir(presidente delle Maldive) NascitaMale, 1901 MorteMale, 27 maggio 1969 (67-68 anni) Luogo di sepolturaCimitero...

 

 

Pour les articles homonymes, voir Saint-Médard. Médard de Noyon Saint Médard à Saint-Médard-d'Eyrans. Saint, évêque Naissance v. 456Salency, Gaule Belgique, Empire romain d'Occident Décès 8 juin 545  Noyon, royaume des Francs Vénéré à abbaye Saint-Médard de Soissons Vénéré par Église catholique Fête 8 juin modifier  Médard de Noyon (en latin Medardus), ou saint Médard, ou saint Mard, ce qui est une évolution phonétique normale en français, fut évêque de No...

9th quadrennial U.S. presidential election 1820 United States presidential election ← 1816 November 1 – December 6, 1820 1824 → 235 members[a] of the Electoral College118 electoral votes needed to winTurnout10.1%[1] 6.8 pp   Nominee James Monroe Party Democratic-Republican Home state Virginia Running mate Daniel D. Tompkins Electoral vote 228[b] States carried 23 Popular vote 85,443 Percentage 78.3% Presidential ele...

 

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Tikus shio – berita · surat kabar · buku · cendekiawan · JSTOR Shio tikus adalah salah satu dari kedua belas shio yang ada dalam penanggalan Tionghoa. Orang yang memiliki shio tikus dalam kepercayaa...

 

 

Space probe launched by NASA in 1973 Pioneer 11An artist's impression of a Pioneer spacecraft on its way to interstellar space.Mission typePlanetary and heliosphere explorationOperatorNASA / ARCCOSPAR ID1973-019A SATCAT no.6421WebsitePioneer Project website (archived) NASA Archive pageMission duration22 years, 7 months and 19 days Spacecraft propertiesManufacturerTRWLaunch mass258.5 kg[1]Power155 watts (at launch) Start of missionLaunch dateApril 6, 1973, 02:11:00&...

British actor (1929–2020) For the American science fiction writer, see Robert S. Richardson. Philip LathamBornCharles Philip Latham(1929-01-17)17 January 1929Essex, England[1][2]Died20 June 2020(2020-06-20) (aged 91)OccupationActorYears active1955–1990 Charles Philip Latham (17 January 1929 – 20 June 2020)[3][4][5][6] was a British actor. He was best known for playing Willy Izard in The Troubleshooters (1965-1972) and Plantagenet...

 

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此条目也许具备关注度,但需要可靠的来源来加以彰显。(2022年8月26日)请协助補充可靠来源以改善这篇条目。 此條目没有列出任何参考或来源。 (2022年8月26日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 由零開始郭富城...