This article's lead sectionmay be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article.(June 2023)
The first paper that has "non-Hermitian quantum mechanics" in the title was published in 1996 [1] by Naomichi Hatano and David R. Nelson. The authors mapped a classical statistical model of flux-line pinning by columnar defects in high-Tc superconductors to a quantum model by means of an inverse path-integral mapping and ended up with a non-Hermitian Hamiltonian with an imaginary vector potential in a random scalar potential. They further mapped this into a lattice model and came up with a tight-binding model with asymmetric hopping, which is now widely called the Hatano-Nelson model. The authors showed that there is a region where all eigenvalues are real despite the non-Hermiticity.
In the early 1960s, Olga Taussky, Michael Drazin, and Emilie Haynsworth demonstrated that the necessary and sufficient criteria for a finite-dimensional matrix to have real eigenvalues is that said matrix is pseudo-Hermitian with a positive-definite metric.
[15][16]
In 2002, Ali Mostafazadeh showed that diagonalizable PT-symmetric Hamiltonians belong to the class of pseudo-Hermitian Hamiltonians.[17][18][19] In 2003, it was proven that in finite dimensions, PT-symmetry is equivalent to pseudo-Hermiticity regardless of diagonalizability,[20]
thereby applying to the physically interesting case of non-diagonalizable Hamiltonians at exceptional points. This indicates that the mechanism of PT-symmetry breaking at exception points, where the Hamiltionian is usually not diagonalizable, is the Krein collision between two eigenmodes with opposite signs of actions.
In 2005, PT symmetry was introduced to the field of optics by the research group of Gonzalo Muga by noting that PT symmetry corresponds to the presence of balanced gain and loss.[21] In 2007, the physicist Demetrios Christodoulides and his collaborators further studied the implications of PT symmetry in optics.[22][23] The coming years saw the first experimental demonstrations of PT symmetry in passive and active systems.[24][25] PT symmetry has also been applied to classical mechanics, metamaterials, electric circuits, and nuclear magnetic resonance.[26][22]
In 2017, a non-Hermitian PT-symmetric Hamiltonian was proposed by Dorje Brody and Markus Müller that "formally satisfies the conditions of the Hilbert–Pólya conjecture."[27][28]
^M. G. Krein, “A generalization of some investigations of A. M. Lyapunov on linear differential equations with periodic coefficients,” Dokl. Akad. Nauk SSSR N.S. 73, 445 (1950) (Russian).
^M. G. Krein, Topics in Differential and Integral Equations and Operator Theory (Birkhauser, 1983).
^I. M. Gel’fand and V. B. Lidskii, “On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients,” Usp. Mat. Nauk 10:1(63), 3−40 (1955) (Russian).
^V. Yakubovich and V. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975), Vol. I.