Negative frequency

The counterclockwise-rotating vector (cos t, sin t) has a positive frequency of +1 radian per unit of time. Not shown is a clockwise-rotating vector (cos (−t), sin (−t)) which has a negative frequency of -1 radian per unit of time. Both go around a unit circle every 2π units of time, but in opposite directions.

In mathematics, the concept of signed frequency (negative and positive frequency) can indicate both the rate and sense of rotation; it can be as simple as a wheel rotating clockwise or counterclockwise. The rate is expressed in units such as revolutions (a.k.a. cycles) per second (hertz) or radian/second (where 1 cycle corresponds to 2π radians).

Example: Mathematically, the vector has a positive frequency of +1 radian per unit of time and rotates counterclockwise around a unit circle, while the vector has a negative frequency of -1 radian per unit of time, which rotates clockwise instead.

Sinusoids

Let ω > 0 be an angular frequency with units of radians/second. Then the function f(t) = −ωt + θ has slope −ω, which is called a negative frequency. But when the function is used as the argument of a cosine operator, the result is indistinguishable from cos(ωtθ). Similarly, sin(−ωt + θ) is indistinguishable from sin(ωtθ + π). Thus any sinusoid can be represented in terms of a positive frequency. The sign of the underlying phase slope is ambiguous.

A negative frequency causes the sin function (violet) to lead the cos (red) by 1/4 cycle.

The ambiguity is resolved when the cosine and sine operators can be observed simultaneously, because cos(ωt + θ) leads sin(ωt + θ) by 14 cycle (i.e. π2 radians) when ω > 0, and lags by 14 cycle when ω < 0. Similarly, a vector, (cos ωt, sin ωt), rotates counter-clockwise if ω > 0, and clockwise if ω < 0. Therefore, the sign of is also preserved in the complex-valued function:

   

(Eq.1)

whose corollary is:

   

(Eq.2)

In Eq.1 the second term is an addition to that resolves the ambiguity. In Eq.2 the second term looks like an addition, but it is actually a cancellation that reduces a 2-dimensional vector to just one dimension, resulting in the ambiguity. Eq.2 also shows why the Fourier transform has responses at both even though can have only one sign. What the false response does is enable the inverse transform to distinguish between a real-valued function and a complex one.

Applications

Simplifying the Fourier transform

Perhaps the best-known application of negative frequency is the formula:

which is a measure of the energy in function at frequency When evaluated for a continuum of argument the result is called the Fourier transform.[A]

For instance, consider the function:

And:

Note that although most functions do not comprise infinite duration sinusoids, that idealization is a common simplification to facilitate understanding.

Looking at the first term of this result, when the negative frequency cancels the positive frequency, leaving just the constant coefficient (because ), which causes the infinite integral to diverge. At other values of the residual oscillations cause the integral to converge to zero. This idealized Fourier transform is usually written as:

For realistic durations, the divergences and convergences are less extreme, and smaller non-zero convergences (spectral leakage) appear at many other frequencies, but the concept of negative frequency still applies. Fourier's original formulation (the sine transform and the cosine transform) requires an integral for the cosine and another for the sine. And the resultant trigonometric expressions are often less tractable than complex exponential expressions. (see Analytic signal, Euler's formula § Relationship to trigonometry, and Phasor)

Sampling of positive and negative frequencies and aliasing

This figure depicts two complex sinusoids, colored gold and cyan, that fit the same sets of real and imaginary sample points. They are thus aliases of each other when sampled at the rate (fs) indicated by the grid lines. The gold-colored function depicts a positive frequency, because its real part (the cos function) leads its imaginary part by 1/4 of one cycle. The cyan function depicts a negative frequency, because its real part lags the imaginary part.

See also

Notes

  1. ^ There are several forms of the Fourier transform. This is the non-unitary form in angular frequency of time

Further reading

  • Lyons, Richard G. (Nov 11, 2010). Chapt 8.4. Understanding Digital Signal Processing (3rd ed.). Prentice Hall. 944 pgs. ISBN 0137027419.
  • Lyons, Richard G. (Nov 2001). "Understanding Digital Signal Processing's Frequency Domain". RF Design magazine. Retrieved Dec 29, 2022.

Read other articles:

DemiAlbum studio karya Demi LovatoDirilis14 Mei 2013 (2013-05-14)Direkam2012–13GenrePop, dance-pop[1]Durasi47:48LabelHollywoodProduser Josh Alexander Mitch Allan Battleroy Jason Evigan Carl Falk Toby Gad Andrew Goldstein Jonas Jeberg Emanuel Kiriakou The Monsters and the Strangerz Anne Preven David DQ Quiñones Matt Rad Rami Yacoub Jarrad Rogers Matt Squire Billy Steinberg Ryan Tedder Noel Zancanella Kronologi Demi Lovato Unbroken(2011)Unbroken2011 Demi(2013) Confident(2015...

Хобоксар-Монгольський автономний повіт Офіційна назва спр. китайська: 和布克赛尔蒙古自治县 (1 січня 1955)уйг. ئاپتونوم ناھىيىسى قوبۇقسار موڭغۇل‎каз. قوبىقسارى موڭعۇل اۆتونوميالى اۋدانىмонг. ᠬᠣᠪᠣᠭᠰᠠᠶᠢᠷ ᠮᠣᠩᠭᠣᠯ ᠥᠪᠡᠷᠲᠡᠭᠡᠨ ᠵᠠᠰᠠᠬᠤ ᠰᠢᠶᠠᠨкалм. ᡍᡆᡋᡆᡎᠰᠠᡅᠷᡅ ᡏ

Mappa delle province giapponesi con la provincia di Ise evidenziata Ise o Seishu (giapponese: 伊勢国; -no kuni ) è una vecchia provincia del Giappone che includeva la maggior parte dell'attuale prefettura di Mie. Confinava con le province di Iga, Kii, Mino, Ōmi, Owari, Shima e Yamato. L'antica capitale provinciale era Suzuka. La moderna Tsu è la più grande città castello, sebbene nel Periodo Sengoku ci fossero altri castelli come a Kuwana e Matsusaka. Altri progetti Alt...

Eugenia UbicaciónCoordenadas 19°23′08″N 99°09′27″O / 19.385466, -99.157469Dirección Av. Cuauhtémoc y Eje 5 Sur EugeniaCol. Vertiz Narvarte y Narvarte PonienteLocalidad Benito Juárez, Ciudad de México Datos de la estaciónPunto kilométrico 13.3 kmInauguración 25 de agosto de 1980 (43 años)Pasajeros 6,721,700 (2016)[1]​N.º de andenes 2N.º de vías 2Operador Sistema de Transporte Colectivo de la Ciudad de MéxicoServicios detalladosPosición Subterr...

جزء من سلسلة المقالات حول ثقافة ألبانيا تاريخ إيليريون العصور الوسطى ألبانيا تحت حكم الدولة العثمانية ألبانيا المستقلة شخصيات ألبان القبائل العائلات النبيلة الشتات الألباني حقوق المثليين في ألبانيا لغات Gheg Arbanasi (Dalmatia) Upper Reka dialect Istrian Albanian Tosk Lab Cham Arvanitika Arvanitic Arbëresh تقاليد Be...

Jamie Mackie Informasi pribadiNama lengkap James Charles Mackie[1]Tanggal lahir 22 September 1985 (umur 38)[2]Tempat lahir Dorking, InggrisTinggi 1,73 m (5 ft 8 in)[2]Posisi bermain StrikerInformasi klubKlub saat ini Reading(pinjaman dari Nottingham Forest)Nomor 19Karier senior*Tahun Tim Tampil (Gol)2003–2004 Wimbledon 13 (0)2004–2005 Milton Keynes Dons 3 (0)2005–2008 Exeter City 87 (19)2005 → Sutton United (pinjaman) 5 (2)2008–2010 Plymou...

Kongregasi Misionaris Putra Hati Kudus Bunda Perawan MariaClaretianCongregatio Missionariorum Filiorum Immaculati Cordis Beatae Mariae VirginisSingkatanCMFTanggal pendirian16 Juli 1849PendiriSanto Antonius Maria KlaretTipeOrdo keagamaan Katolik (Lembaga Kehidupan Tahbisan)Kantor pusatVia del Sacro Cuore di Maria, 5, 00197 Roma, ItaliaSitus webclaret.org Klaresia, sebuah komunitas imam dan bruder Katolik Roma, didirikan oleh Santo Antonius Klaret pada 1849. Karya mereka sangat beragam dan terg...

Trump ist eine Weiterleitung auf diesen Artikel. Weitere Bedeutungen sind unter Trump (Begriffsklärung) aufgeführt. Donald Trump (2022) Unterschrift von Donald Trump, 2009 Donald John Trump [ˈdɑn.əld dʒɑn tɹɐmp] (* 14. Juni 1946 in Queens, New York City, New York) ist ein US-amerikanischer Unternehmer, Entertainer und Politiker der Republikanischen Partei, der von 2017 bis 2021 der 45. Präsident der Vereinigten Staaten war. Er gilt als einer der umstrittensten Politiker der US-Gesch...

  لمعانٍ أخرى، طالع صندوق الدنيا (توضيح). صندوق الدنيا (مسلسل) النوع كوميدي، دراما المخرج الإبداعي فيصل الياسري بطولة سامي قفطان رنا أحمدعبد الجبار الشرقاويصلاح مونيكا خالد أحمد مصطفىكنعان عليسوران علي شريفعدنان شلاشمجموعة الأطفال التأليف الموسيقي سهيل شوقي البلد ...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Slippin': Ten Years with the Bloods – news · newspapers · books · scholar · JSTOR (January 2015) (Learn how and when to remove this template message) 2005 American filmSlippin:Directed byJoachim SchroederTommy SowardsWritten byJoachim SchroederTommy SowardsProduced byJoachim Sch...

إكسوكي (إوانينا) تقسيم إداري البلد اليونان  [1] إحداثيات 39°41′15″N 20°49′21″E / 39.6875°N 20.8225°E / 39.6875; 20.8225  السكان التعداد السكاني 2975 (إحصاء السكان) (2011)  معلومات أخرى التوقيت ت ع م+02:00 (توقيت قياسي)،  وت ع م+03:00 (توقيت صيفي)  الرمز الجغرافي 10175092  تعديل مصد�...

Argentina Escudo de la Argentina Este artículo es una parte de la serie: Constitución de la Nación Argentina Texto completo de la Constitución vigente Texto de la Constitución Análisis del texto original PreámbuloConstitución de 1853 Reformas constitucionales Reforma de 1860Reforma de 1866Reforma de 1898Reforma de 1949Reforma de 1957Estatuto temporario de 1972Reforma de 1994 Otros países ·  Portal de Derecho La Constitución argentina de 1853 es la constitución que sentó...

1937 film by Gus Meins The Hit ParadeDirected byGus MeinsScreenplay byBradford RopesSamuel OrnitzHarry RuskinStory byBradford RopesProduced byNat LevineStarringFrances LangfordPhil ReganMax TerhuneEdward BrophyLouise HenryPert KeltonCinematographyErnest MillerEdited byErnest J. NimsLester OrlebeckMusic byAlberto ColomboProductioncompanyRepublic PicturesDistributed byRepublic PicturesRelease date April 26, 1937 (1937-04-26) Running time83 minutesCountryUnited StatesLanguageEngli...

Mathematical idealization of the trace left by a moving point For other uses, see Curve (disambiguation). A parabola, one of the simplest curves, after (straight) lines In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that appeared more than 2000 years ago in Euclid's Elements: The [curved] line[a] i...

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (مايو 2023) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إ�...

Lighthouse in Italy LighthouseCapo Passero Capo Passero LighthouseLocationIsola di Capo PasseroPortopalo di Capo PasseroSicilyCoordinates36°41′19″N 15°09′06″E / 36.688627°N 15.151623°E / 36.688627; 15.151623TowerConstructed1871Constructionmasonry towerHeight11 metres (36 ft)Shapecylindrical tower with balcony and lantern atop a massive fortMarkingswhite tower, grey metallic lantern domePower sourcesolar power OperatorMarina Militare[1]...

1934 United States Senate special election in Montana ← 1930 November 6, 1934 1936 →   Nominee James E. Murray Scott Leavitt Party Democratic Republican Popular vote 116,965 77,307 Percentage 59.66% 39.43% U.S. senator before election John E. Erickson Democratic Elected U.S. Senator James E. Murray Democratic Elections in Montana Federal government Presidential elections 1892 1896 1900 1904 1908 1912 1916 1920 1924 1928 1932 1936 1940 1944 1948 1952 1956 1960 1...

Ham Hindu Nahin Cover page of the 1898 first edition of 'Ham Hindu Nahin' (We Are Not Hindus) by Kahn Singh Nabha. Digitized and provided by the Panjab Digital Library.AuthorKahn Singh NabhaOriginal titleਹਮ ਹਿੰਦੂ ਨਹੀਂCountryBritish IndiaLanguagePunjabiSubjectA critique on the Sikh identityPublication date1898 (1st ed.)Media typePrintPages185 (4th ed.) Part of a series on Sikh literature Hagiographical Janamsakhi Suraj Parkash Sau Sakhi Lexis Mahan Kosh Praxis R...

Flag carrier of Taiwan This article is about the flag carrier of Republic of China (Taiwan). For the flag carrier of People's Republic of China, see Air China. China Airlines Cargo redirects here. Not to be confused with China Cargo Airlines, Air China Cargo, or CAL Cargo Air Lines. China Airlines中華航空 IATA ICAO Callsign CI CAL DYNASTY FoundedSeptember 7, 1959; 64 years ago (1959-09-07)Commenced operationsDecember 16, 1959; 63 years ago (1959-12-16)H...

Renaissance palace located in Florence, Italy For other uses, see Palazzo Medici (disambiguation). Palazzo Medici RiccardiThe palace's Renaissance facade with its rusticated stone wallsLocationFlorence, ItalyCoordinates43°46′31″N 11°15′21.56″E / 43.77528°N 11.2559889°E / 43.77528; 11.2559889Built1444-1484Built forCosimo de' MediciOriginal useResidence of the Medici familyCurrent useMetropolitan City of Florence and museumArchitectMichelozzo di BartolomeoArc...