Narrow-gap semiconductor
All semiconductors with bandgaps smaller than silicon
Narrow-gap semiconductors are semiconducting materials with a magnitude of bandgap that is smaller than 0.7 eV, which corresponds to an infrared absorption cut-off wavelength over 2.5 micron. A more extended definition includes all semiconductors with bandgaps smaller than silicon (1.1 eV).[ 1] [ 2] Modern terahertz ,[ 3] infrared ,[ 4] and thermographic [ 5] technologies are all based on this class of semiconductors.
Narrow-gap materials made it possible to realize satellite remote sensing ,[ 6] photonic integrated circuits for telecommunications ,[ 7] [ 8] [ 9] and unmanned vehicle Li-Fi systems,[ 10] in the regime of Infrared detector and infrared vision .[ 11] [ 12] They are also the materials basis for terahertz technology, including security surveillance of concealed weapon uncovering,[ 13] [ 14] [ 15] safe medical and industrial imaging with terahertz tomography ,[ 16] [ 17] [ 18] as well as dielectric wakefield accelerators .[ 19] [ 20] [ 21] Besides, thermophotovoltaics embedded with narrow-gap semiconductors can potentially use the traditionally wasted portion of solar energy that takes up ~49% of the sun light spectrum.[ 22] [ 23] Space crafts, deep ocean instruments, and vacuum physics setups use narrow-gap semiconductors to achieve cryogenic cooling .[ 24] [ 25]
List of narrow-gap semiconductors
See also
References
^ Li, Xiao-Hui (2022). "Narrow-Bandgap Materials for Optoelectronics Applications" . Frontiers of Physics . 17 (1): 13304. Bibcode :2022FrPhy..1713304L . doi :10.1007/s11467-021-1055-z . S2CID 237652629 .
^ Chu, Junhao; Sher, Arden (2008). Physics and Properties of Narrow Gap Semiconductors . Springer. doi :10.1007/978-0-387-74801-6 . ISBN 978-0-387-74743-9 .
^ Jones, Graham A.; Layer, David H.; Osenkowsky, Thomas G. (2007). National Association of Broadcasters Engineering Handbook . Taylor and Francis. p. 7. ISBN 978-1-136-03410-7 .
^ Avraham, M.; Nemirovsky, J.; Blank, T.; Golan, G.; Nemirovsky, Y. (2022). "Toward an Accurate IR Remote Sensing of Body Temperature Radiometer Based on a Novel IR Sensing System Dubbed Digital TMOS" . Micromachines . 13 (5): 703. doi :10.3390/mi13050703 . PMC 9145132 . PMID 35630174 .
^ Hapke B (19 January 2012). Theory of Reflectance and Emittance Spectroscopy . Cambridge University Press. p. 416. ISBN 978-0-521-88349-8 .
^ Lovett, D. R. Semimetals and narrow-bandgap semiconductors; Pion Limited: London, 1977; Chapter 7.
^ Inside Telecom Staff (30 July 2022). "How Can Photonic Chips Help to Create a Sustainable Digital Infrastructure?" . Inside Telecom . Retrieved 20 September 2022 .
^ Awad, Ehab (October 2018). "Bidirectional Mode Slicing and Re-Combining for Mode Conversion in Planar Waveguides" . IEEE Access . 6 (1): 55937. doi :10.1109/ACCESS.2018.2873278 . S2CID 53043619 .
^ Vergyris, Panagiotis (16 June 2022). "Integrated photonics for quantum applications" . Laser Focus World . Retrieved 20 September 2022 .
^ "Comprehensive Summary of Modulation Techniques for LiFi | LiFi Research" . www.lifi.eng.ed.ac.uk . Retrieved 2018-01-16 .
^ "The Infrared Array Camera (IRAC)" . Spitzer Space Telescope. NASA / JPL / Caltech. Archived from the original on 13 June 2010. Retrieved 13 January 2017 .
^ Szondy, David (28 August 2016). "Spitzer goes "Beyond" for final mission" . New Atlas . Retrieved 13 January 2017 .
^ "Space in Images – 2002–06 – Meeting the team" .
^ "Space camera blazes new terahertz trails" . Times Higher Education (THE) . 2003-02-12. Retrieved 2023-08-04 .
^ Winner of the 2003/04 Research Councils' Business Plan Competition – 24 February 2004 . epsrc.ac.uk. 27 February 2004
^ Guillet, J. P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P. (2014). "Review of Terahertz Tomography Techniques". Journal of Infrared, Millimeter, and Terahertz Waves . 35 (4): 382– 411. Bibcode :2014JIMTW..35..382G . CiteSeerX 10.1.1.480.4173 . doi :10.1007/s10762-014-0057-0 . S2CID 120535020 .
^ Mittleman, Daniel M.; Hunsche, Stefan; Boivin, Luc; Nuss, Martin C. (1997). "T-ray tomography" . Optics Letters . 22 (12): 904– 906. Bibcode :1997OptL...22..904M . doi :10.1364/OL.22.000904 . ISSN 1539-4794 . PMID 18185701 .
^ Katayama, I.; Akai, R.; Bito, M.; Shimosato, H.; Miyamoto, K.; Ito, H.; Ashida, M. (2010). "Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals" . Applied Physics Letters . 97 (2): 021105. Bibcode :2010ApPhL..97b1105K . doi :10.1063/1.3463452 . ISSN 0003-6951 .
^ Dolgashev, Valery; Tantawi, Sami; Higashi, Yasuo; Spataro, Bruno (2010-10-25). "Geometric dependence of radio-frequency breakdown in normal conducting accelerating structures". Applied Physics Letters . 97 (17): 171501. Bibcode :2010ApPhL..97q1501D . doi :10.1063/1.3505339 .
^ Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X. (2015-10-06). "Terahertz-driven linear electron acceleration" . Nature Communications . 6 (1): 8486. arXiv :1411.4709 . Bibcode :2015NatCo...6.8486N . doi :10.1038/ncomms9486 . PMC 4600735 . PMID 26439410 .
^ Jing, Chunguang (2016). "Dielectric Wakefield Accelerators". Reviews of Accelerator Science and Technology . 09 (6): 127– 149. Bibcode :2016RvAST...9..127J . doi :10.1142/s1793626816300061 .
^ Poortmans, Jef. "IMEC website: Photovoltaic Stacks" . Archived from the original on 2007-10-13. Retrieved 2008-02-17 .
^ "A new heat engine with no moving parts is as efficient as a steam turbine" . MIT News | Massachusetts Institute of Technology . 13 April 2022. Retrieved 2022-04-13 .
^ Radebaugh, Ray (2009-03-31). "Cryocoolers: the state of the art and recent developments" . Journal of Physics: Condensed Matter . 21 (16): 164219. Bibcode :2009JPCM...21p4219R . doi :10.1088/0953-8984/21/16/164219 . ISSN 0953-8984 . PMID 21825399 . S2CID 22695540 .
^ Cooper, Bernard E; Hadfield, Robert H (2022-06-28). "Viewpoint: Compact cryogenics for superconducting photon detectors" . Superconductor Science and Technology . 35 (8): 080501. Bibcode :2022SuScT..35h0501C . doi :10.1088/1361-6668/ac76e9 . ISSN 0953-2048 . S2CID 249534834 .
^ Nelson, James T. (1955). "Chicago Section: 1. Electrical and optical properties of MgPSn and Mg2 Si". American Journal of Physics . 23 (6). American Association of Physics Teachers (AAPT): 390. doi :10.1119/1.1934018 . ISSN 0002-9505 .
Further reading