DoD Cancer Innovator, Julius Edgar Lilienfeld Prize, Willis E. Lamb Award, Weizmann Women in Science Award, R. W. Wood Prize, SPIE Biophotonics Technology Innovator Award, Frank Isakson Prize for Optical Effects in Solids
Naomi J. Halas is the Stanley C. Moore Professor in Electrical and Computer Engineering, and professor of biomedical engineering, chemistry, and physics at Rice University.[1] She is also the founding director of Rice University Laboratory for Nanophotonics, and the Smalley-Curl Institute.[2] She invented the first nanoparticle with tunable plasmonic resonances, which are controlled by their shape and structure,[3] and has won numerous awards for her pioneering work in the field of nanophotonics and plasmonics. She was also part of a team that developed the first dark pulse soliton in 1987 while working for IBM.
Halas received her bachelor's degree from La Salle University in 1980. She obtained her master's degree from Bryn Mawr College in 1984 and her doctorate from Bryn Mawr in 1987.[5] She was a graduate research fellow at the IBM Thomas J Watson Research Center during her doctoral studies, during which time she developed the first "dark pulse" soliton with Dieter Kroekel, Giampiero Giuliani and Daniel Grischkowsky.[6] A "dark pulse" soliton is a standing wave that propagates through an optical fiber without spreading and which consists of a short interruption of a light pulse. She was also part of the first research efforts focusing on time-domain terahertz spectroscopy during her time at IBM.[7]
Career and research
Halas was a postdoctoral research fellow at AT&T Bell Laboratories before joining Rice University in 1990, where she now heads the nanoengineering research group bearing her name.[5] She was appointed professor in the department of electrical and computer engineering and the department of chemistry in 1999, and three years later was named the Stanley C. Moore Professor in Electrical and Computer Engineering. In 2004, she became the director of the Laboratory for Nanophotonics at Rice. She has also been a professor in the department of biomedical engineering and the department of physics since 2006 and 2009, respectively.[8]
Plasmonic nanoshells
Halas' work in the 21st century focuses on noble metal nanoshells covering semiconducting or insulating cores. Her research was the first to experimentally show that nanoshells with different dimensions and shapes have different plasmonic resonances, and that these resonances could therefore be tuned by changing nanoparticle geometries.[9] Controlling light-matter interaction of these plasmonic nanoparticles includes applications in chemical sensing, catalysis, and energy harvesting, as well as photodynamic therapy and other biomedical applications.
In 2003, Halas and her colleague Jennifer L. West were awarded the Nanotechnology Now Best Discovery Award for their groundbreaking work to develop a cancer therapy based on metallic nanoshells.[10] Halas also received the Innovator Award from the US Department of Defense Congressionally Directed Breast Cancer Research Program, and was awarded a four-year $3 million grant to conduct further research into the treatment.[11]
^"Julius Edgar Lilienfeld Prize Recipient: Naomi Halas". Retrieved 2018-01-29. Citation:"for her pioneering research at the intersection of optics and nanoscience, and groundbreaking applications of those findings in the field of plasmonics, and for her exceptional impact communicating the excitement of scientific discoveries and their vital role in improving people's lives."
^"Weizmann Women and Science Award: Prof. Naomi Halas". 25 April 2017. Retrieved 2018-01-29. "For pioneering and seminal contributions to the field of plasmonics, which have profoundly influenced modern optics – both in basic understanding and in applications"
^"2014 Frank Isakson Prize for Optical Effects in Solids Recipient Halas". Retrieved 2018-01-29. Citation: "For seminal contributions to our understanding of the photophysics of low dimensional material systems, revealing the rich optical properties of plasmons, excitons, and electrons in confined geometries."