Montgomery curve

In mathematics, the Montgomery curve is a form of elliptic curve introduced by Peter L. Montgomery in 1987,[1] different from the usual Weierstrass form. It is used for certain computations, and in particular in different cryptography applications.

Definition

A Montgomery curve of equation

A Montgomery curve over a field K is defined by the equation

for certain A, BK and with B(A2 − 4) ≠ 0.

Generally this curve is considered over a finite field K (for example, over a finite field of q elements, K = Fq) with characteristic different from 2 and with A ≠ ±2 and B ≠ 0, but they are also considered over the rationals with the same restrictions for A and B.

Montgomery arithmetic

It is possible to do some "operations" between the points of an elliptic curve: "adding" two points consists of finding a third one such that ; "doubling" a point consists of computing (For more information about operations see The group law) and below.

A point on the elliptic curve in the Montgomery form can be represented in Montgomery coordinates , where are projective coordinates and for .

Notice that this kind of representation for a point loses information: indeed, in this case, there is no distinction between the affine points and because they are both given by the point . However, with this representation it is possible to obtain multiples of points, that is, given , to compute .

Now, considering the two points and : their sum is given by the point whose coordinates are:

If , then the operation becomes a "doubling"; the coordinates of are given by the following equations:

The first operation considered above (addition) has a time-cost of 3M+2S, where M denotes the multiplication between two general elements of the field on which the elliptic curve is defined, while S denotes squaring of a general element of the field.

The second operation (doubling) has a time-cost of 2M + 2S + 1D, where D denotes the multiplication of a general element by a constant; notice that the constant is , so can be chosen in order to have a small D.

Algorithm and example

The following algorithm represents a doubling of a point on an elliptic curve in the Montgomery form.

It is assumed that . The cost of this implementation is 1M + 2S + 1*A + 3add + 1*4. Here M denotes the multiplications required, S indicates the squarings, and a refers to the multiplication by A.

Example

Let be a point on the curve . In coordinates , with , .

Then:

The result is the point such that .

Addition

Given two points , on the Montgomery curve in affine coordinates, the point represents, geometrically the third point of intersection between and the line passing through and . It is possible to find the coordinates of , in the following way:

1) consider a generic line in the affine plane and let it pass through and (impose the condition), in this way, one obtains and ;

2) intersect the line with the curve , substituting the variable in the curve equation with ; the following equation of third degree is obtained:

As it has been observed before, this equation has three solutions that correspond to the coordinates of , and . In particular this equation can be re-written as:

3) Comparing the coefficients of the two identical equations given above, in particular the coefficients of the terms of second degree, one gets:

.

So, can be written in terms of , , , , as:

4) To find the coordinate of the point it is sufficient to substitute the value in the line . Notice that this will not give the point directly. Indeed, with this method one find the coordinates of the point such that , but if one needs the resulting point of the sum between and , then it is necessary to observe that: if and only if . So, given the point , it is necessary to find , but this can be done easily by changing the sign to the coordinate of . In other words, it will be necessary to change the sign of the coordinate obtained by substituting the value in the equation of the line.

Resuming, the coordinates of the point , are:

Doubling

Given a point on the Montgomery curve , the point represents geometrically the third point of intersection between the curve and the line tangent to ; so, to find the coordinates of the point it is sufficient to follow the same method given in the addition formula; however, in this case, the line y = lx + m has to be tangent to the curve at , so, if with

then the value of l, which represents the slope of the line, is given by:

by the implicit function theorem.

So and the coordinates of the point , are:

Equivalence with twisted Edwards curves

Let be a field with characteristic different from 2.

Let be an elliptic curve in the Montgomery form:

with ,

and let be an elliptic curve in the twisted Edwards form:

with

The following theorem shows the birational equivalence between Montgomery curves and twisted Edwards curve:[2]

Theorem (i) Every twisted Edwards curve is birationally equivalent to a Montgomery curve over . In particular, the twisted Edwards curve is birationally equivalent to the Montgomery curve where , and .

The map:

is a birational equivalence from to , with inverse:

:

Notice that this equivalence between the two curves is not valid everywhere: indeed the map is not defined at the points or of the .

Equivalence with Weierstrass curves

Any elliptic curve can be written in Weierstrass form. In particular, the elliptic curve in the Montgomery form

:

can be transformed in the following way: divide each term of the equation for by , and substitute the variables x and y, with and respectively, to get the equation

To obtain a short Weierstrass form from here, it is sufficient to replace u with the variable :

finally, this gives the equation:

Hence the mapping is given as

:

In contrast, an elliptic curve over base field in Weierstrass form

:

can be converted to Montgomery form if and only if has order divisible by four and satisfies the following conditions:[3]

  1. has at least one root ; and
  2. is a quadratic residue in .

When these conditions are satisfied, then for we have the mapping

:
.

See also

Notes

  1. ^ Peter L. Montgomery (1987). "Speeding the Pollard and Elliptic Curve Methods of Factorization". Mathematics of Computation. 48 (177): 243–264. doi:10.2307/2007888. JSTOR 2007888.
  2. ^ Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange and Christiane Peters (2008). "Twisted Edwards Curves". Progress in Cryptology – AFRICACRYPT 2008. Lecture Notes in Computer Science. Vol. 5023. Springer-Verlag Berlin Heidelberg. pp. 389–405. doi:10.1007/978-3-540-68164-9_26. ISBN 978-3-540-68159-5.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. ^ Katsuyuki Okeya, Hiroyuki Kurumatani, and Kouichi Sakurai (2000). Elliptic Curves with the Montgomery-Form and Their Cryptographic Applications. Public Key Cryptography (PKC2000). doi:10.1007/978-3-540-46588-1_17.{{cite conference}}: CS1 maint: multiple names: authors list (link)

References

Read other articles:

Johann Georg Hamann Johann Georg Hamann adalah seorang filsuf Jerman penting, dengan mendukung gerekan utama Sturm und Drang di Jerman.[1][2] Dia sejawat dengan pendukung ide-ide sejarah, yaitu Isaiah Berlin.[2] Isaiah Berlin mengungkapkan tentang the Counter-Enlightenment. Johann Georg Hamann adalah seorang Luteran yang pietis.[2] Dia juga merupakan sehabat dari seorang filsuf terkemuka Jerman, yaitu Immanuel Kant. Johann Georg Hamann bisa bermain flut.[2&...

 

Painting by Albert Gleizes Man on a BalconyFrench: L'Homme au balconArtistAlbert GleizesYear1912MediumOil on canvasDimensions195.6 cm × 114.9 cm (77 in × 45.25 in)LocationPhiladelphia Museum of Art, Philadelphia Man on a Balcony (also known as Portrait of Dr. Théo Morinaud and 'L'Homme au balcon), is a large oil painting created in 1912 by the French artist, theorist and writer Albert Gleizes (1881–1953). The painting was exhibited in Paris at th...

 

Pierre-Alexis TremblayMember of the Canadian Parliamentfor Chicoutimi—SaguenayIn office1867–1872Succeeded byWilliam Evan PriceMember of the Canadian Parliamentfor CharlevoixIn office1872–1876Preceded bySimon-Xavier CimonSucceeded byHector-Louis LangevinIn office1878–1879Preceded byHector-Louis LangevinSucceeded byJoseph-Stanislas PerraultMember of the Legislative Assembly of Quebec for Chicoutimi-SaguenayIn office1867–1874Succeeded byMichel Guillaume BabyMember of the Legislative As...

Kereta api SembraniKereta api Sembrani Tambahan menuju Gambir mendekati Stasiun Tambun sebelum diubah menjadi perjalanan reguler pada jadwal pagiInformasi umumJenis layananKereta api antarkotaStatusBeroperasiDaerah operasiDaerah Operasi VIII SurabayaPendahuluMutiara UtaraMulai beroperasi1 Oktober 1995Operator saat iniKereta Api IndonesiaLintas pelayananStasiun awalSurabaya PasarturiStasiun akhirGambirJarak tempuh720 kmWaktu tempuh rerata8 jam 38 menit[1]Frekuensi perjalananDua kali ke...

 

Kepulauan AleutGeografiLokasiSamudra Pasifik, Laut BeringJumlah pulau>300Pulau besarPulau UnalaskaLuas17.670 km2Panjang1.900 kmPemerintahanNegara Amerika SerikatNegara bagian AlaskaKota terbesarUnalaska (4.283 jiwa)KependudukanPenduduk8.162 jiwa (2000)Kelompok etnikAleut Kepulauan Aleut dari udara. Kepulauan Aleut (kemungkinan dari Chukchi aliat, pulau) adalah rantaian dari lebih dari 14 pulau vulkanik besar dan 55 pulau vulkanik kecil,[1] yang...

 

Di Koperasi Peternakan Bandung Selatan Pangalengan, kerupuk susu turut dijual Kerupuk susu adalah produk semacam kerupuk udang yang terbuat dari bahan dasar dan divariasikan dengan susu. Adapun, bahan-bahan yang diperlukan selain susu, adalah tepung terigu dan tapioka, penyedap rasa, dan rempah-rempah seperti bawang putih dan ketumbar, serta kuning telur.[1][2][3] Kerupuk susu (sebelah kanan), bersama dengan dodol susu (tengah) dan permen susu Kerupuk semacam ini banya...

2 Raja-raja 2Kitab Raja-raja (Kitab 1 & 2 Raja-raja) lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab 2 Raja-rajaKategoriNevi'imBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen12← pasal 1 pasal 3 → 2 Raja-raja 2 (atau II Raja-raja 2, disingkat 2Raj 2) adalah pasal kedua Kitab 2 Raja-raja dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Dalam Alkitab Ibrani termasuk Nabi-nabi Awal atau Nevi'im Rishonim [נביאים ראשונים] dalam bag...

 

Jalur Jalan Raya Ancol - Cililitan adalah sebuah ruas Jalan Raya di wilayah Provinsi DKI Jakarta, Indonesia yang memiliki panjang 16,01 km yang menghubungkan kawasan Ancol, Pademangan, Jakarta Utara hingga Cililitan, Kramat Jati, Jakarta Timur. Jalan ini terbagi menjadi 9 bagian, yakni Jalan Gunung Sahari, Jalan Pasar Senen, Jalan Kramat Raya, Jalan Salemba Raya, Jalan Matraman Raya, Jalan Jatinegara Barat, Jalan Jatinegara Timur, Jalan Otto Iskandardinata, dan Jalan Dewi Sartika. Jalur ...

 

Region in Queensland, AustraliaSouth West QueenslandQueenslandRegions of QueenslandPopulation26,489 (2011)[1] • Density0.0828278/km2 (0.214523/sq mi)Area319,808 km2 (123,478.6 sq mi)LGA(s)Maranoa Region, Shire of Balonne, Shire of Paroo, Shire of Murweh, Shire of Bulloo, Shire of QuilpieState electorate(s)WarregoFederal division(s)Maranoa South West Queensland is a remote region in the Australian state of Queensland which covers 319,808 km2 (123,4...

H.I.TPoster promosi untuk H.I.TGenreDrama proseduralDitulis olehKim Young-hyun Park Sang-yeonSutradaraYoo Chul-yong Kim Young-minPemeranGo Hyun-jung Ha Jung-woo Kim Jung-min Yoon Ji-minLagu pembukaSuccess oleh Super JuniorNegara asalKorea SelatanBahasa asliKoreaJmlh. episode20ProduksiProduserLee Eun-gyuLokasi produksiKorea SelatanDurasi60 menit Senin dan Selasa pukul 21:55Rumah produksiKim Jong-hak ProductionRilis asliJaringanMunhwa Broadcasting CorporationRilis19 Maret (2007-03-19)...

 

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

Cet article concerne la ville indienne. Pour le centre bouddhiste installé en Occitanie (France), voir Monastère Nalanda. Cet article est une ébauche concernant une localité indienne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Nâlandâ Ruines de l'université de Nālandā Administration Pays Inde État ou territoire Bihar District Nālandā Fuseau horaire IST (UTC+05:30) Géographie Coordonnées 25...

 

Anti-recoil gunbarrel attachment This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2018) (Learn how and when to remove this message) This article possibly contains original research. Please improve it by...

 

هيران الاسم الرسمي هيران موقع هيران الإحداثيات 4°47′00″N 45°27′00″E / 4.7833333333333°N 45.45°E / 4.7833333333333; 45.45   تقسيم إداري  البلد  الصومال  المحافظة محافظة هيران العاصمة بلد وين  خصائص جغرافية  المساحة 90000 كيلومتر مربع  معلومات أخرى رمز جيونيمز 57060  أيزو ...

Kanonik Petrus-Ludovicus Stillemans (1821-1902), seorang kanonik Seminari, Sint Niklaas, Flanders. Kanonik (dari bahasa Latin canonicus, yang berasal dari bahasa Yunani κανονικός, kanonikós, berkaitan dengan suatu peraturan, secara rutin) adalah seorang imam Gereja Katolik atau Komuni Anglikan yang merupakan anggota dari suatu ordo yang diatur oleh seperangkat peraturan gerejawi (hukum kanonik). Pranala luar Canons Regular of the Immaculate Conception Canons Regular of Premontre, Or...

 

Il sistema di protezione termica dello Space Shuttle è lo scudo termico che protegge l'orbiter durante il rientro atmosferico alla fine di una missione, quando si raggiungono temperature di 1650 °C. Inoltre, costituisce anche una barriera dal freddo dello spazio mentre lo Shuttle è in orbita[1]. Esso ricopre completamente la superficie dello Shuttle, ed è costituito da sette diversi materiali a seconda della protezione termica richiesta in una particolare parte del velivolo. Lo sc...

 

Order of classical architecture Corinthian peripteros of the Temple of Bacchus, Baalbek, Lebanon, unknown architect, 150–250 Corinthian columns from the Pantheon, Rome, unknown architect, c. 114–124 AD, which provided a prominent model for Renaissance and later architects Compared of the Doric, Tuscan, Ionic, Corinthian and Composite orders; with staircase The Corinthian order (Greek: Κορινθιακὸς ῥυθμός, Korinthiakós rythmós; Latin: Ordo Corinthius) is the last develo...

This article is about the album. For the novel, see The Glass Bead Game. 2009 studio album by James BlackshawThe Glass Bead GameStudio album by James BlackshawReleasedMay 26, 2009RecordedNovember 2008GenreFolkLength49:31LabelYoung God RecordsJames Blackshaw chronology Litany of Echoes(2008) The Glass Bead Game(2009) All Is Falling(2010) Professional ratingsAggregate scoresSourceRatingMetacritic82/100[1]Review scoresSourceRatingAllMusic[2]Cokemachineglow79%[3]Du...

 

奥利韦拉Oliveira市镇奥利韦拉在巴西的位置坐标:20°41′45″S 44°49′37″W / 20.69583°S 44.82694°W / -20.69583; -44.82694国家巴西州米纳斯吉拉斯州面积 • 总计896.494 平方公里(346.138 平方英里)海拔982 公尺(3,222 英尺)人口(2022) • 總計39,262人 • 密度43.8人/平方公里(113人/平方英里) 奧利韋拉(葡萄牙语:Oliveira)是巴西�...