We seek the solution to a set of linear equations, expressed in matrix terms as
The Richardson iteration is
where is a scalar parameter that has to be chosen such that the sequence converges.
It is easy to see that the method has the correct fixed points, because if it converges, then and has to approximate a solution of .
Convergence
Subtracting the exact solution , and introducing the notation for the error , we get the equality for the errors
Thus,
for any vector norm and the corresponding induced matrix norm. Thus, if , the method converges.
Suppose that is symmetric positive definite and that are the eigenvalues of . The error converges to if for all eigenvalues . If, e.g., all eigenvalues are positive, this can be guaranteed if is chosen such that . The optimal choice, minimizing all , is , which gives the simplest Chebyshev iteration. This optimal choice yields a spectral radius of
If there are both positive and negative eigenvalues, the method will diverge for any if the initial error has nonzero components in the corresponding eigenvectors.
Consider minimizing the function . Since this is a convex function, a sufficient condition for optimality is that the gradient is zero () which gives rise to the equation