Midpoint

The midpoint of the segment (x1, y1) to (x2, y2)

In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.

Formula

The midpoint of a segment in n-dimensional space whose endpoints are and is given by

That is, the ith coordinate of the midpoint (i = 1, 2, ..., n) is

Construction

Given two points of interest, finding the midpoint of the line segment they determine can be accomplished by a compass and straightedge construction. The midpoint of a line segment, embedded in a plane, can be located by first constructing a lens using circular arcs of equal (and large enough) radii centered at the two endpoints, then connecting the cusps of the lens (the two points where the arcs intersect). The point where the line connecting the cusps intersects the segment is then the midpoint of the segment. It is more challenging to locate the midpoint using only a compass, but it is still possible according to the Mohr-Mascheroni theorem.[1]

Geometric properties involving midpoints

Circle

  • Any line perpendicular to any chord of a circle and passing through its midpoint also passes through the circle's center.
  • The butterfly theorem states that, if M is the midpoint of a chord PQ of a circle, through which two other chords AB and CD are drawn; AD and BC intersect chord PQ at X and Y correspondingly, then M is the midpoint of XY.

Ellipse

  • The ellipse's center is also the midpoint of a segment connecting the two foci of the ellipse.

Hyperbola

  • The midpoint of a segment connecting a hyperbola's vertices is the center of the hyperbola.

Triangle

  • The perpendicular bisector of a side of a triangle is the line that is perpendicular to that side and passes through its midpoint. The three perpendicular bisectors of a triangle's three sides intersect at the circumcenter (the center of the circle through the three vertices).
  • The median of a triangle's side passes through both the side's midpoint and the triangle's opposite vertex. The three medians of a triangle intersect at the triangle's centroid (the point on which the triangle would balance if it were made of a thin sheet of uniform-density metal).
  • A midsegment (or midline) of a triangle is a line segment that joins the midpoints of two sides of the triangle. It is parallel to the third side and has a length equal to one half of that third side.
  • The medial triangle of a given triangle has vertices at the midpoints of the given triangle's sides, therefore its sides are the three midsegments of the given triangle. It shares the same centroid and medians with the given triangle. The perimeter of the medial triangle equals the semiperimeter (half the perimeter) of the original triangle, and its area is one quarter of the area of the original triangle. The orthocenter (intersection of the altitudes) of the medial triangle coincides with the circumcenter (center of the circle through the vertices) of the original triangle.
  • Every triangle has an inscribed ellipse, called its Steiner inellipse, that is internally tangent to the triangle at the midpoints of all its sides. This ellipse is centered at the triangle's centroid, and it has the largest area of any ellipse inscribed in the triangle.

Quadrilateral

  • The two bimedians of a convex quadrilateral are the line segments that connect the midpoints of opposite sides, hence each bisecting two sides. The two bimedians and the line segment joining the midpoints of the diagonals are concurrent at (all intersect at)a point called the "vertex centroid", which is the midpoint of all three of these segments.[2]: p.125 
  • The four "maltitudes" of a convex quadrilateral are the perpendiculars to a side through the midpoint of the opposite side, hence bisecting the latter side. If the quadrilateral is cyclic (inscribed in a circle), these maltitudes all meet at a common point called the "anticenter".
  • Varignon's theorem states that the midpoints of the sides of an arbitrary quadrilateral form the vertices of a parallelogram, and if the quadrilateral is not self-intersecting then the area of the parallelogram is half the area of the quadrilateral.
  • The Newton line is the line that connects the midpoints of the two diagonals in a convex quadrilateral that is not a parallelogram. The line segments connecting the midpoints of opposite sides of a convex quadrilateral intersect in a point that lies on the Newton line.

General polygons

  • In a regular polygon with an even number of sides, the midpoint of a diagonal between opposite vertices is the polygon's center.
  • The midpoint-stretching polygon of a cyclic polygon P (a polygon whose vertices all fall on the same circle) is another cyclic polygon inscribed in the same circle, the polygon whose vertices are the midpoints of the circular arcs between the vertices of P.[3] Iterating the midpoint-stretching operation on an arbitrary initial polygon results in a sequence of polygons whose shapes converge to that of a regular polygon.[3][4]

Generalizations

The abovementioned formulas for the midpoint of a segment implicitly use the lengths of segments. However, in the generalization to affine geometry, where segment lengths are not defined,[5] the midpoint can still be defined since it is an affine invariant. The synthetic affine definition of the midpoint M of a segment AB is the projective harmonic conjugate of the point at infinity, P, of the line AB. That is, the point M such that H[A,B; P,M].[6] When coordinates can be introduced in an affine geometry, the two definitions of midpoint will coincide.[7]

The midpoint is not naturally defined in projective geometry since there is no distinguished point to play the role of the point at infinity (any point in a projective range may be projectively mapped to any other point in (the same or some other) projective range). However, fixing a point at infinity defines an affine structure on the projective line in question and the above definition can be applied.

The definition of the midpoint of a segment may be extended to curve segments, such as geodesic arcs on a Riemannian manifold. Note that, unlike in the affine case, the midpoint between two points may not be uniquely determined.

See also

References

  1. ^ "Wolfram mathworld". 29 September 2010.
  2. ^ Altshiller-Court, Nathan, College Geometry, Dover Publ., 2007.
  3. ^ a b Ding, Jiu; Hitt, L. Richard; Zhang, Xin-Min (1 July 2003), "Markov chains and dynamic geometry of polygons" (PDF), Linear Algebra and Its Applications, 367: 255–270, doi:10.1016/S0024-3795(02)00634-1, retrieved 19 October 2011.
  4. ^ Gomez-Martin, Francisco; Taslakian, Perouz; Toussaint, Godfried T. (2008), "Convergence of the shadow sequence of inscribed polygons", 18th Fall Workshop on Computational Geometry, ISBN 978-84-8181-227-5
  5. ^ Fishback, W.T. (1969), Projective and Euclidean Geometry (2nd ed.), John Wiley & Sons, p. 214, ISBN 0-471-26053-3
  6. ^ Meserve, Bruce E. (1983) [1955], Fundamental Concepts of Geometry, Dover, p. 156, ISBN 0-486-63415-9
  7. ^ Young, John Wesley (1930), Projective Geometry, Carus Mathematical Monographs #4, Mathematical Association of America, pp. 84–85
  • Animation – showing the characteristics of the midpoint of a line segment

Read other articles:

KrystalgadeKrystalgadeLength275 m (902 ft)LocationIndre By, Copenhagen, DenmarkPostal code1172Coordinates55°40′51.24″N 12°34′24.96″E / 55.6809000°N 12.5736000°E / 55.6809000; 12.5736000 Krystalgade (literally Crystal Street) is a street in central Copenhagen, Denmark, connecting Nørregade to Købmagergade. Copenhagen Central Library and the Great Synagogue of Copenhagen are located in the street. History Skidenstræde seen on Gedde's district map...

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Swiss folk metal band EluveitieEluveitie performing in 2023Background informationOriginWinterthur, Zürich, SwitzerlandGenres Folk metal melodic death metal Celtic metal Years active2002–presentLabels Nuclear Blast Fear Dark MembersChrigel GlanzmannKay BremRafael SalzmannMatteo SistiJonas WolfAlain AckermannNicole AnspergerFabienne ErniAnnie RiedigerPast membersPhilipp ReinmannMättu AckermanYves TribelhornDani FürerGian AlbertinDario HofstetterDide MarfurtSeverin BinderLinda SuterSarah Wa...

Gunung BakerKulshanMount Baker as seen from the Southeast at Boulder CreekTitik tertinggiKetinggian10.781 ft (3.286 m)[1]Puncak8.812 ft (2.686 m)[1]Koordinat48°46′38″N 121°48′48″W / 48.7773426°N 121.8132008°W / 48.7773426; -121.8132008Koordinat: 48°46′38″N 121°48′48″W / 48.7773426°N 121.8132008°W / 48.7773426; -121.8132008 [2]PenamaanEtimologiJoseph BakerGeografiGunung Bak...

 

Pour les autres articles nationaux ou selon les autres juridictions, voir Sénat. Pour un article plus général, voir Sénat (France). Cet article est une ébauche concernant l’histoire de France. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Le palais du Luxembourg sous le Second Empire. Le Sénat sous la Deuxième République puis le Second Empire est une assemblée législative instituée par la constitu...

 

Cekakak-pita dada-jingga Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Coraciiformes Famili: Halcyonidae Genus: Tanysiptera Spesies: T. sylvia Nama binomial Tanysiptera sylviaGould, 1850 Cekakak-pita dada-jingga (Tanysiptera sylvia) adalah spesies burung dalam famili Halcyonidae. Penyebaran dan subspesies Terdiri dari empat subspesies, dengan daerah persebaran:[2] T. s. leucura (Neumann, 1915), ...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Daftar Bupati Ciamis – berita · surat kabar · buku · cendekiawan · JSTOR (Maret 2024) Bupati CiamisLambang Kabupaten CiamisPetahanaHerdiat Sunaryasejak 20 April 2019KediamanPendopo Kabupaten CiamisMasa j...

 

US Air Force base near Minot, North Dakota This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Minot Air Force Base – news · newspapers · books · scholar · JSTOR (May 2013) (Learn how and when to remove this message) KMIB redirects here. For the Korean newspaper, see Kukmin Ilbo. Minot Air Force BaseNear Minot, ...

 

Chronologies Données clés 1859 1860 1861  1862  1863 1864 1865Décennies :1830 1840 1850  1860  1870 1880 1890Siècles :XVIIe XVIIIe  XIXe  XXe XXIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, Algérie, Angola, Bénin, Botswana, Burkina Faso, Burundi, Cameroun, Cap-Vert, République centrafricaine, Comores, République du Congo, République démocratique du Congo, Côte d'Ivoire, Djibouti, Égyp...

Canon fisheye lens EF8–15mm f/4L FISHEYE USMMakerCanonTechnical dataTypeZoomFocus driveUltrasonic motorFocal length8–15mmCrop factor1Aperture (max/min)f/4Close focus distance0.16 m (6.2 in)Max. magnification0.34 (at 15 mm)Construction14 elements in 11 groupsFeaturesShort back focus NoLens-based stabilization NoMacro capable NoUnique featuresFisheye, L-SeriesApplicationSpecial EffectPhysicalMax. length83.0 mm (3.7 in)Diameter78.5 mm (3.1 in)Weight540 gAng...

 

2020 Council of the District of Columbia election ← 2018 November 3, 2020[a] 2022 → 5 seats on the Council of the District of Columbia[b]7 seats needed for a majority   Majority party Minority party   Leader Phil Mendelson Party Democratic Independent Seats won 11 2 Seat change Results by district Results by vote share Composition of the council by political party Chair of the Council before election Phil Mendelson Democratic Elected ...

 

Commune and town in Tlemcen Province, AlgeriaBeni KhelladCommune and townCountry AlgeriaProvinceTlemcen ProvinceTime zoneUTC+1 (CET) Beni Khellad is a town and commune in Tlemcen Province in northwestern Algeria.[1] References Algeria portal ^ Communes of Algeria. Statoids. Retrieved December 12, 2010. vte Tlemcen ProvinceCapital: TlemcenTlemcen District Tlemcen Ghazaouet District Ghazaouet Souahlia Tienet Dar Yaghmouracene Sabra District Sabra Bouhlou Nedroma District Nedroma Dj...

  提示:此条目页的主题不是萧。 簫琴簫與洞簫木管樂器樂器別名豎吹、豎篴、通洞分類管樂器相關樂器 尺八 东汉时期的陶制箫奏者人像,出土於彭山江口汉崖墓,藏於南京博物院 箫又稱洞簫、簫管,是中國古老的吹管樂器,特徵為單管、豎吹、開管、邊稜音發聲[1]。「簫」字在唐代以前本指排簫,唐宋以來,由於單管豎吹的簫日漸流行,便稱編管簫爲排簫�...

 

Indonesian, Indo-Portuguese and Thai curry dish This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Shrimp curry – news · newspapers · books · scholar · JSTOR (July 2020) This article should specify the language of its non-English content, using {{lang}}, {{transliteration...

 

1949–1951 U.S. Congress 81st United States Congress80th ←→ 82ndUnited States Capitol (1956)January 3, 1949 – January 3, 1951Members96 senators435 representatives3 non-voting delegatesSenate majorityDemocraticSenate PresidentVacant (until January 20, 1949)Alben W. Barkley (D) (from January 20, 1949)House majorityDemocraticHouse SpeakerSam Rayburn (D)Sessions1st: January 3, 1949 – October 19, 19492nd: January 3, 1950 – January 2, 1951 The 81st United States Congress w...

1999 Valencian regional election ← 1995 13 June 1999 2003 → All 89 seats in the Corts Valencianes45 seats needed for a majorityOpinion pollsRegistered3,361,989 7.4%Turnout2,279,805 (67.8%)8.2 pp   First party Second party Third party   Leader Eduardo Zaplana Antoni Asunción Joan Ribó Party PP PSOE–p EUPV Leader since 26 September 1993 8 April 1999 1997 Leader's seat Valencia Valencia Valencia Last election 42 seats, 42.8% 32 seats, 34.0...

 

Brazilian footballer (born 2003) In this Portuguese name, the first or maternal family name is Santos and the second or paternal family name is Almeida. Marcos Leonardo Marcos Leonardo with Santos in 2022Personal informationFull name Marcos Leonardo Santos Almeida[1]Date of birth (2003-05-02) 2 May 2003 (age 21)[1]Place of birth Itapetinga, BrazilHeight 1.75 m (5 ft 9 in)[1]Position(s) ForwardTeam informationCurrent team BenficaNumber 36Youth ca...

 

Pertempuran WuhanBagian dari Perang Tiongkok-Jepang KeduaPasukan Tiongkok di sekitar Sungai Yangtze selama Pertempuran Wuhan.Tanggal11 Juni – 27 Oktober 1938LokasiWuhan dan sekitarnyaHasil Kemenangan JepangPihak terlibat Tentara Revolusioner Nasional Sukarelawan Soviet[1] Kekaisaran JepangTokoh dan pemimpin Chiang Kai-shek Chen Cheng Xue Yue Wu Qiwei Zhang Fakui Wang Jingjiu Ou Zhen Li Tsung-jen Sun Lianzhong Hirohito Kotohito Kan'in Yasuji Okamura, Shunroku Hata, Shizuichi Tanaka K...

Battle of the Mughal-Sikh Wars This article is about a conflict that took place in the year 1700. For other battles fought at the same location, see Battle of Anandpur. Battle of Anandpur (1700)Part of Mughal-Sikh WarsDate1700[1]LocationAnandpurResult Sikh victory.[1]Belligerents Khalsa (Sikhs) Mughal Empire Rajas of the Sivalik HillsCommanders and leaders Guru Gobind Singh Panj Pyare Bhai Daya Singh Bhai Dharam Singh Bhai Mohkam Singh Bhai Himmat Singh Bhai Sahib Singh Din Be...

 

Method of preparing copy for photographing to make a printing plate For the creation of fake photos, e.g., a paste-up, see Photograph manipulation. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Paste up – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this message...