Mazur manifold

In differential topology, a branch of mathematics, a Mazur manifold is a contractible, compact, smooth four-dimensional manifold-with-boundary which is not diffeomorphic to the standard 4-ball. Usually these manifolds are further required to have a handle decomposition with a single -handle, and a single -handle; otherwise, they would simply be called contractible manifolds. The boundary of a Mazur manifold is necessarily a homology 3-sphere.

History

Barry Mazur[1] and Valentin Poenaru[2] discovered these manifolds simultaneously. Akbulut and Kirby showed that the Brieskorn homology spheres , and are boundaries of Mazur manifolds, effectively coining the term `Mazur Manifold.'[3] These results were later generalized to other contractible manifolds by Casson, Harer and Stern.[4][5][6] One of the Mazur manifolds is also an example of an Akbulut cork which can be used to construct exotic 4-manifolds.[7]

Mazur manifolds have been used by Fintushel and Stern[8] to construct exotic actions of a group of order 2 on the 4-sphere.

Mazur's discovery was surprising for several reasons:

  • Every smooth homology sphere in dimension is homeomorphic to the boundary of a compact contractible smooth manifold. This follows from the work of Kervaire[9] and the h-cobordism theorem. Slightly more strongly, every smooth homology 4-sphere is diffeomorphic to the boundary of a compact contractible smooth 5-manifold (also by the work of Kervaire). But not every homology 3-sphere is diffeomorphic to the boundary of a contractible compact smooth 4-manifold. For example, the Poincaré homology sphere does not bound such a 4-manifold because the Rochlin invariant provides an obstruction.
  • The h-cobordism Theorem implies that, at least in dimensions there is a unique contractible -manifold with simply-connected boundary, where uniqueness is up to diffeomorphism. This manifold is the unit ball . It's an open problem as to whether or not admits an exotic smooth structure, but by the h-cobordism theorem, such an exotic smooth structure, if it exists, must restrict to an exotic smooth structure on . Whether or not admits an exotic smooth structure is equivalent to another open problem, the smooth Poincaré conjecture in dimension four. Whether or not admits an exotic smooth structure is another open problem, closely linked to the Schoenflies problem in dimension four.

Mazur's observation

Let be a Mazur manifold that is constructed as union a 2-handle. Here is a sketch of Mazur's argument that the double of such a Mazur manifold is . is a contractible 5-manifold constructed as union a 2-handle. The 2-handle can be unknotted since the attaching map is a framed knot in the 4-manifold . So union the 2-handle is diffeomorphic to . The boundary of is . But the boundary of is the double of .

References

  1. ^ Mazur, Barry (1961). "A note on some contractible 4-manifolds". Ann. of Math. 73 (1): 221–228. doi:10.2307/1970288. JSTOR 1970288. MR 0125574.
  2. ^ Poenaru, Valentin (1960). "Les decompositions de l'hypercube en produit topologique". Bull. Soc. Math. France. 88: 113–129. doi:10.24033/bsmf.1546. MR 0125572.
  3. ^ Akbulut, Selman; Kirby, Robion (1979). "Mazur manifolds". Michigan Math. J. 26 (3): 259–284. doi:10.1307/mmj/1029002261. MR 0544597.
  4. ^ Casson, Andrew; Harer, John L. (1981). "Some homology lens spaces which bound rational homology balls". Pacific J. Math. 96 (1): 23–36. doi:10.2140/pjm.1981.96.23. MR 0634760.
  5. ^ Fickle, Henry Clay (1984). "Knots, Z-Homology 3-spheres and contractible 4-manifolds". Houston J. Math. 10 (4): 467–493. MR 0774711.
  6. ^ R.Stern (1978). "Some Brieskorn spheres which bound contractible manifolds". Notices Amer. Math. Soc. 25.
  7. ^ Akbulut, Selman (1991). "A fake compact contractible 4-manifold" (PDF). J. Differential Geom. 33 (2): 335–356. doi:10.4310/jdg/1214446320. MR 1094459.
  8. ^ Fintushel, Ronald; Stern, Ronald J. (1981). "An exotic free involution on ". Ann. of Math. 113 (2): 357–365. doi:10.2307/2006987. JSTOR 2006987. MR 0607896.
  9. ^ Kervaire, Michel A. (1969). "Smooth homology spheres and their fundamental groups". Trans. Amer. Math. Soc. 144: 67–72. doi:10.1090/S0002-9947-1969-0253347-3. MR 0253347.
  • Rolfsen, Dale (1990), Knots and links. Corrected reprint of the 1976 original., Mathematics Lecture Series, vol. 7, Houston, TX: Publish or Perish, Inc., pp. 355–357, Chapter 11E, ISBN 0-914098-16-0, MR 1277811

Read other articles:

L'efficienza luminosa o più correttamente efficacia luminosa di una sorgente di luce è il rapporto tra il flusso luminoso (emissione luminosa percepibile espressa in lumen) e la potenza elettrica assorbita dalla rete elettrica, espressa in watt. Dimensionalmente si esprime quindi in lumen/watt. Il flusso luminoso è definito in base alla peculiare risposta ai diversi colori dell'occhio umano medio, rappresentabile con una ben definita curva di sensibilità alle lunghezze d'onda dello spettr...

 

 

43rd Miss Universe pageant Miss Universe 1994Sushmita Sen, Miss Universe 1994Date21 May 1994PresentersBob GoenArthel NevilleAngela VisserEntertainmentPeabo BrysonBayanihan Philippine National Folk Dance CompanyEraserheadsVenuePhilippine International Convention Center, Pasay City, Metro Manila, PhilippinesBroadcasterCBS (international)ABS-CBN (DWWX-TV) (official broadcaster)Entrants77Placements10DebutsRussiaSlovakiaZimbabweWithdrawalsAustriaBelizeCzech RepublicGhanaLebanonNicaraguaSurinameUni...

 

 

LymphedemaLower extremity lymphedemaInformasi umumNama lainLymphoedema, lymphatic obstruction, lymphatic insufficiencySpesialisasiVascular medicine, Rheumatology,[1] Physical medicine and rehabilitation General surgery, Plastic surgery Limfedema (bahasa Inggris: Lymphedema) atau penyakit obstruksi limfatik adalah kondisi ketika terdapat sumbatan pada sistem limfatik tubuh. Pembengkakan ini terjadi pada bagian kaki,kedua tangan atau lengan yang disebabkan oleh peredaran limfa yang buru...

Video game persona of Richard Garriott This article is about the Ultima video game character. For the person by this nickname and Ultima Online username, see Richard Garriott. For the fictional spaceship, see Lord British (spaceship). Fictional character Lord BritishUltima characterFirst appearanceUltima I: The First Age of Darkness (1981)Last appearanceNox Archaist (2020)Created byRichard GarriottVoiced byRichard Garriott (Ultima VI FM-Towns version, Serpent Isle)Ev Lunning (Ultima IX) Lord ...

 

 

Situs Ratu Bokoꦏꦝꦠꦺꦴꦤ꧀ꦫꦠꦸ​ꦧꦏPintu gerbang Ratu BokoLokasi di Kabupaten SlemanTampilkan peta SlemanSitus Ratu Baka (Jawa)Tampilkan peta JawaSitus Ratu Baka (Indonesia)Tampilkan peta IndonesiaNama lainCandi Ratu BokoKeraton Ratu BokoInformasi umumGaya arsitekturKompleks keratonLokasi Kabupaten Sleman, Daerah Istimewa Yogyakarta, IndonesiaAlamatKalurahan Bokoharjo, Kapanéwon Prambanan, Kabupaten Sleman, Daerah Istimewa Yogyakarta, IndonesiaKotaKabupaten SlemanNegara...

 

 

Bauhaus Dessau Bauhaus, adalah sebuah sekolah seni dan desain di Jerman yang sangat berpengaruh yang terkenal dengan keunikan gabungan antara seni dan teknik dalam produksi massal, yang dalam perkembangannya lebih dikenal sebagai nama sebuah gaya seni tersendiri.[1] Sekolah ini berdiri pada tahun 1919 dan berdiri sampai ditutup oleh Nazi pada tahun 1933.[1] Pertama kali dipimpin oleh Walter Gropius (1883-1969) dan Ludwig Mies van der Rohe (1886-1969).[1] Bauhaus berger...

Yuka ŌtsuboYuka Ōtsubo pada Juli 2018Nama asal大坪 由佳Lahir11 Juni 1993 (umur 30)Chiba Prefecture, JapanPekerjaan Seiyuu penyanyi Tahun aktif2011–sekarangAgenEarly WingKarya terkenalYuruYuri sebagai Kyōko ToshinōTinggi1.655 cm (54 ft 4 in) Yuka Ōtsubo (大坪 由佳code: ja is deprecated , Ōtsubo Yuka, lahir 11 Juni 1993)[1] adalah pengisi suara, dan penyanyi Jepang dari Prefektur Chiba yang berafiliasi dengan Early Wing. Pada tahun 2014, ia...

 

 

Artikel ini sudah memiliki daftar referensi, bacaan terkait, atau pranala luar, tetapi sumbernya belum jelas karena belum menyertakan kutipan pada kalimat. Mohon tingkatkan kualitas artikel ini dengan memasukkan rujukan yang lebih mendetail bila perlu. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini)Lestari MoerdijatPotret resmi sebagai Wakil Ketua Majelis Permusyawaratan Rakyat Republik Indonesia periode 2019–2024 Wakil Ketua Majelis Permusyawaratan Rakyat Republik Indon...

 

 

Artikel biografi ini ditulis menyerupai resume atau daftar riwayat hidup (Curriculum Vitae). Tolong bantu perbaiki agar netral dan ensiklopedis. Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Hermawan Kartajaya – berita · surat kabar · buku · cendekiawan �...

Voce principale: Unione Sportiva Lecce. Unione Sportiva LecceStagione 2000-2001Sport calcio Squadra Lecce Allenatore Alberto Cavasin Presidente Mario Moroni Serie A13º posto Coppa ItaliaOttavi di finale Maggiori presenzeCampionato: Vugrinec, Chimenti (34) Miglior marcatoreCampionato: Lucarelli (12)Totale: Lucarelli, Vugrinec (14) 1999-2000 2001-2002 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'Unione Sportiva Lecce nelle competizioni uffici...

 

 

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

 

This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this message) County-level city in Shandong, People's Republic of ChinaLongkou 龙口市County-level cityL...

Intervals of expansion and recession in economic activity This article's lead section may be too long. Please read the length guidelines and help move details into the article's body. (March 2024) Part of a series onMacroeconomics Basic concepts Aggregate demand Aggregate supply Business cycle Deflation Demand shock Disinflation Effective demand Expectations Adaptive Rational Financial crisis Growth Inflation Demand-pull Cost-push Interest rate Investment Liquidity trap Measures of national i...

 

 

2012 live album by MotörheadThe Wörld Is Ours – Vol. 2: Anyplace Crazy as Anywhere ElseLive album by MotörheadReleased21 September 2012[1]Recorded10 July 20116 August 201125 September 2011[2]VenueSonisphere Knebworth, EnglandWacken Open Air, Schleswig-Holstein, GermanyRock in Rio, Brazil[2]Length2:14:56LabelUDR GmbH / EMIProducerMotörheadMotörhead chronology The Wörld Is Ours - Vol. 1: Everywhere Further Than Everyplace Else(2011) The Wörld Is Ours �...

 

 

Suntar-Khayata RangeСунтар-ХаятаView of the range in JuneHighest pointPeakMus-KhayaElevation2,959 m (9,708 ft)GeographySuntar-Khayata RangeLocation in the Far Eastern Federal District, Russia CountryRussiaRegionSakha/Khabarovsk KraiRange coordinates62°36′00″N 140°53′00″E / 62.60000°N 140.88333°E / 62.60000; 140.88333Parent rangeEast Siberian SystemGeologyOrogenyAlpine orogenyAge of rockLate JurassicType of rockVolcanic rocks, grani...

The St. Louis flag features two rivers merging in a confluence of French heritage signified by a fleur-de-lis. The Iconography of St. Louis, Missouri is strongly informed by the city's French and German heritages, physical features, and place in American history. Mound City Monks Mound is one of the few remaining mounds in the St. Louis region. Long before Europeans settled in St. Louis, the Cahokia lived throughout the area and constructed many mounds. Though history and population growth wo...

 

 

This article is about the 1997 film. For the 1980 film, see Guru (1980 film). 1997 film directed by Rajiv Anchal GuruPosterDirected byRajiv AnchalWritten byC. G. Rajendra BabuStory byRajiv AnchalProduced byJanasammathi CreationsStarring Mohanlal Suresh Gopi Madhupal Kaveri Sithara Sreenivasan Nedumudi Venu CinematographyS. KumarEdited byB. LeninV. T. VijayanMusic byIlaiyaraajaProductioncompanyJanasammathi CreationsDistributed byJanasammathi ReleaseRelease date 12 September 1997 ...

 

 

County in Pennsylvania, United States Berks County redirects here. For the county of England, see Berkshire. Not to be confused with Bucks County, Pennsylvania. County in PennsylvaniaBerks CountyCountyReading, the largest city in the county and fourth-largest in Pennsylvania, in October 2010 FlagSealLocation within the U.S. state of PennsylvaniaPennsylvania's location within the U.S.Coordinates: 40°25′N 75°56′W / 40.42°N 75.93°W / 40.42; -75.93Country Unit...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Finnish nobility – news · newspapers · books · scholar · JSTOR (September 2022) (Learn how and when to remove this message) The Diet of Finland in 1863. Grand Duke of Finland, Emperor of Russia Alexander II opened the Diet in Helsinki. Grand Duchy of Finland ar...

 

 

Aullacomune Aulla – VedutaPanorama di Aulla e, sovrastante l'abitato, la fortezza della Brunella LocalizzazioneStato Italia Regione Toscana Provincia Massa-Carrara AmministrazioneSindacoRoberto Valettini (lista civica Aulla nel cuore) dal 12-6-2017 TerritorioCoordinate44°13′N 9°58′E44°13′N, 9°58′E (Aulla) Altitudine64 m s.l.m. Superficie59,99 km² Abitanti10 682[3] (31-10-2023) Densità178,06 ab./km² FrazioniAlbiano Magra, ...