Markov model

In probability theory, a Markov model is a stochastic model used to model pseudo-randomly changing systems. It is assumed that future states depend only on the current state, not on the events that occurred before it (that is, it assumes the Markov property). Generally, this assumption enables reasoning and computation with the model that would otherwise be intractable. For this reason, in the fields of predictive modelling and probabilistic forecasting, it is desirable for a given model to exhibit the Markov property.

Introduction

There are four common Markov models used in different situations, depending on whether every sequential state is observable or not, and whether the system is to be adjusted on the basis of observations made:

Markov models
System state is fully observable System state is partially observable
System is autonomous Markov chain Hidden Markov model
System is controlled Markov decision process Partially observable Markov decision process

Markov chain

The simplest Markov model is the Markov chain. It models the state of a system with a random variable that changes through time. In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state. An example use of a Markov chain is Markov chain Monte Carlo, which uses the Markov property to prove that a particular method for performing a random walk will sample from the joint distribution.

Hidden Markov model

A hidden Markov model is a Markov chain for which the state is only partially observable or noisily observable. In other words, observations are related to the state of the system, but they are typically insufficient to precisely determine the state. Several well-known algorithms for hidden Markov models exist. For example, given a sequence of observations, the Viterbi algorithm will compute the most-likely corresponding sequence of states, the forward algorithm will compute the probability of the sequence of observations, and the Baum–Welch algorithm will estimate the starting probabilities, the transition function, and the observation function of a hidden Markov model.

One common use is for speech recognition, where the observed data is the speech audio waveform and the hidden state is the spoken text. In this example, the Viterbi algorithm finds the most likely sequence of spoken words given the speech audio.

Markov decision process

A Markov decision process is a Markov chain in which state transitions depend on the current state and an action vector that is applied to the system. Typically, a Markov decision process is used to compute a policy of actions that will maximize some utility with respect to expected rewards.

Partially observable Markov decision process

A partially observable Markov decision process (POMDP) is a Markov decision process in which the state of the system is only partially observed. POMDPs are known to be NP complete, but recent approximation techniques have made them useful for a variety of applications, such as controlling simple agents or robots.[1]

Markov random field

A Markov random field, or Markov network, may be considered to be a generalization of a Markov chain in multiple dimensions. In a Markov chain, state depends only on the previous state in time, whereas in a Markov random field, each state depends on its neighbors in any of multiple directions. A Markov random field may be visualized as a field or graph of random variables, where the distribution of each random variable depends on the neighboring variables with which it is connected. More specifically, the joint distribution for any random variable in the graph can be computed as the product of the "clique potentials" of all the cliques in the graph that contain that random variable. Modeling a problem as a Markov random field is useful because it implies that the joint distributions at each vertex in the graph may be computed in this manner.

Hierarchical Markov models

Hierarchical Markov models can be applied to categorize human behavior at various levels of abstraction. For example, a series of simple observations, such as a person's location in a room, can be interpreted to determine more complex information, such as in what task or activity the person is performing. Two kinds of Hierarchical Markov Models are the Hierarchical hidden Markov model[2] and the Abstract Hidden Markov Model.[3] Both have been used for behavior recognition[4] and certain conditional independence properties between different levels of abstraction in the model allow for faster learning and inference.[3][5]

Tolerant Markov model

A Tolerant Markov model (TMM) is a probabilistic-algorithmic Markov chain model.[6] It assigns the probabilities according to a conditioning context that considers the last symbol, from the sequence to occur, as the most probable instead of the true occurring symbol. A TMM can model three different natures: substitutions, additions or deletions. Successful applications have been efficiently implemented in DNA sequences compression.[6][7]

Markov-chain forecasting models

Markov-chains have been used as a forecasting methods for several topics, for example price trends,[8] wind power[9] and solar irradiance.[10] The Markov-chain forecasting models utilize a variety of different settings, from discretizing the time-series[9] to hidden Markov-models combined with wavelets[8] and the Markov-chain mixture distribution model (MCM).[10]

See also

References

  1. ^ Kaelbling, L. P.; Littman, M. L.; Cassandra, A. R. (1998). "Planning and acting in partially observable stochastic domains". Artificial Intelligence. 101 (1–2): 99–134. CiteSeerX 10.1.1.390.8474. doi:10.1016/S0004-3702(98)00023-X. ISSN 0004-3702.
  2. ^ Fine, S.; Singer, Y. (1998). "The hierarchical hidden markov model: Analysis and applications". Machine Learning. 32 (1): 41–62. doi:10.1023/A:1007469218079.
  3. ^ a b Bui, H. H.; Venkatesh, S.; West, G. (2002). "Policy recognition in the abstract hidden markov model". Journal of Artificial Intelligence Research. 17: 451–499. doi:10.1613/jair.839. hdl:10536/DRO/DU:30044252.
  4. ^ Theocharous, G. (2002). Hierarchical Learning and Planning in Partially Observable Markov Decision Processes (PhD). Michigan State University.
  5. ^ Luhr, S.; Bui, H. H.; Venkatesh, S.; West, G. A. W. (2003). "Recognition of Human Activity through Hierarchical Stochastic Learning". PERCOM '03 Proceedings of the First IEEE International Conference on Pervasive Computing and Communications. pp. 416–422. CiteSeerX 10.1.1.323.928. doi:10.1109/PERCOM.2003.1192766. ISBN 978-0-7695-1893-0. S2CID 13938580.
  6. ^ a b Pratas, D.; Hosseini, M.; Pinho, A. J. (2017). "Substitutional tolerant Markov models for relative compression of DNA sequences". PACBB 2017 – 11th International Conference on Practical Applications of Computational Biology & Bioinformatics, Porto, Portugal. pp. 265–272. doi:10.1007/978-3-319-60816-7_32. ISBN 978-3-319-60815-0.
  7. ^ Pratas, D.; Pinho, A. J.; Ferreira, P. J. S. G. (2016). "Efficient compression of genomic sequences". Data Compression Conference (DCC), 2016. IEEE. pp. 231–240. doi:10.1109/DCC.2016.60. ISBN 978-1-5090-1853-6. S2CID 14230416.
  8. ^ a b de Souza e Silva, E.G.; Legey, L.F.L.; de Souza e Silva, E.A. (2010). "Forecasting oil price trends using wavelets and hidden Markov models". Energy Economics. 32 (6): 1507. Bibcode:2010EneEc..32.1507D. doi:10.1016/j.eneco.2010.08.006.
  9. ^ a b Carpinone, A; Giorgio, M; Langella, R.; Testa, A. (2015). "Markov chain modeling for very-short-term wind power forecasting". Electric Power Systems Research. 122: 152–158. Bibcode:2015EPSR..122..152C. doi:10.1016/j.epsr.2014.12.025.
  10. ^ a b Munkhammar, J.; van der Meer, D.W.; Widén, J. (2019). "Probabilistic forecasting of high-resolution clear-sky index time-series using a Markov-chain mixture distribution model". Solar Energy. 184: 688–695. Bibcode:2019SoEn..184..688M. doi:10.1016/j.solener.2019.04.014. S2CID 146076100.

Read other articles:

James KarenKaren pada 2014LahirJacob Karnofsky(1923-11-28)28 November 1923Wilkes-Barre, Pennsylvania, Amerika SerikatMeninggal23 Oktober 2018(2018-10-23) (umur 94)Los Angeles, California, Amerika SerikatNama lainMr. PathmarkAlmamaterNeighborhood Playhouse School of the TheatrePekerjaanPemeranTahun aktif1948–2018Suami/istriSusan Reed ​ ​(m. 1958; bercerai 1967)​Alba Francesca ​(m. 1986)​Anak1 James K...

 

Hyundai Santa FeInformasiProdusenHyundai Motor CompanyKia MotorsMasa produksi2000–sekarangBodi & rangkaKelasMid-size crossover SUVBentuk kerangkaSUV 5 pintuTata letakMesin depan, penggerak roda depan / 4WD Hyundai Santa Fe (Korea: 현대 싼타페code: ko is deprecated ) adalah crossover SUV mid-size yang basisnya diambil dari Hyundai Sonata. Namanya diambil dari kota Santa Fe, New Mexico, Amerika Serikat. Mobil ini pertama kali diperkenalkan tahun 2001 sebagai SUV pertama Hyundai,...

 

Grup musik Karungut. Instrumen kecapi yang biasa mengiringi Karungut. KarungutSumber aliranKarunyaSumber kebudayaanKidung suci Karunya dalam Agama Kaharingan, Suku Dayak, KalimantanAlat musik yang biasa digunakanKecapiSerulingKangkanongKatambungToroiGong GarantungVokalBentuk turunanKandayuTandakBalian KarunyaSansana KayauSansana BandarSubgenreDederDongkoiDodoiGenre campuran (fusion)Tandak TimangKarungut ManasaiTopik lainnyaMadihinMacapatMor Lam Karungut adalah sebuah kesenian tradisional dari...

OrchomenusὈρχομενόςThe theatre of OrchomenusShown within GreeceAlternative nameOrchomenosLocationOrchomenos, Peloponnese, GreeceRegionArcadiaCoordinates37°43′29″N 22°18′55″E / 37.72472°N 22.31528°E / 37.72472; 22.31528TypeSettlementSite notesManagement39th Ephorate of Prehistoric and Classical AntiquitiesPublic accessYesWebsiteHellenic Ministry of Culture and Tourism Orchomenus or Orchomenos (Greek: Ὀρχομενός) was an ancient ci...

 

Granular whitish deposit of ice formed by freezing fog Hard rime on a tree Wind blown rime ice formed on the summit cross of the Fronalpstock Rime ice forms when supercooled water droplets freeze onto surfaces. In the atmosphere, there are three basic types of rime ice: Soft rime forms when supercooled water freezes under calm wind conditions. It is milky and crystalline, like sugar, and similar to hoar frost. Hard rime forms by rapid freezing of supercooled water under at least moderate wind...

 

Airport in Queensland, AustraliaDonnington AirparkWoodstock AirportIATA: noneICAO: YDOPSummaryAirport typePublicOperatorDoris I. SmithLocationWoodstock, Queensland, AustraliaElevation AMSL250 ft / 76 mCoordinates19°36′06″S 146°50′33″E / 19.60167°S 146.84250°E / -19.60167; 146.84250MapYDOPLocation in QueenslandRunways Direction Length Surface m ft 11/29 930 3,051 Grass Sources: AIP[1] Donnington Airpark (ICAO: YDOP) is located on the ...

Reciprocating internal combustion engine BRM P75 H-16[1]OverviewManufacturer BRMProduction1966-1968LayoutConfiguration180° H16[2]Displacement3.0 L (2,996 cc)Cylinder bore2.75 in (69.8 mm)Piston stroke1.93 in (48.9 mm)Valvetrain32-valve to 64-valve, DOHC, two-valves per cylinder to four-valves per cylinderCombustionTurbochargerN/AFuel systemFuel injectionFuel typeGasolineCooling systemWater-cooledOutputPower output390–440 bhp (291–328...

 

Questa voce sull'argomento ciclisti svedesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Gösta Pettersson Nazionalità  Svezia Altezza 189 cm Ciclismo Specialità Strada, pista Termine carriera 1974 CarrieraSquadre di club 1970-1972 Ferretti1973 Scic1974 MagniflexNazionale 1960-1974 SveziaPalmarès  Giochi olimpici Bronzo Tokyo 1964 Cronosq. Argento Città del Messico 1968 Cronosq. Bronzo Città del Messico 1968 In linea &...

 

Chinese politician (1889–1973) In this Chinese name, the family name is Zhang. Zhang Xiruo张奚若Zhang XiruoDirector of the Foreign Cultural Liaison Committee [zh]In officeApril 1959 – 1968PremierZhou EnlaiPreceded byNew titleSucceeded byHuang ZhenMinister of EducationIn office1952–1958PremierZhou EnlaiPreceded byMa XulunSucceeded byYang Xiufeng Personal detailsBorn1889Chaoyi County, Shaanxi, Qing ChinaDiedJuly 18, 1973(1973-07-18) (aged 83)Beijing, ChinaPol...

توسع الشعيرات النزفي الوراثي توسع شعيرات الشفة يعتبر سمة مميزة للمرض.توسع شعيرات الشفة يعتبر سمة مميزة للمرض. معلومات عامة الاختصاص علم الوراثة الطبية  من أنواع مرض وراثي سائد  [لغات أخرى]‏،  ومرض وعائي،  ومرض  التاريخ سُمي باسم ويليام أوسلر[1]،  وف�...

 

Subaru TribecaInformasiProdusenSubaruJuga disebutSubaru B9 TribecaMasa produksi2005–sekarangPerakitanLafayette, Indiana, Amerika SerikatBodi & rangkaKelascrossover SUV ukuran sedangBentuk kerangkaSUV 5-pintu Subaru Tribeca adalah mobil SUV kelas atas yang dibuat oleh Subaru dari Fuji Heavy Industries (FHI). Berbasis pada mobil konsep Subaru B9X, versi produksi-nya pertama kali dibuat pada tahun 2005, dan disebut B9 Tribeca yang namanya berasal dari TriBeCa, sebuah kawasan di k...

 

Interpretasi dari pola sembarang yang terbentuk oleh kawah di bulan. Sebuah contoh sederhana mengenai penilaian pribadi manusia tentang pola dan bentuk. Bias atau prasikap[1] adalah sebuah penyajian bahan yang dipenuhi prasangka. Ia juga berarti kesalahan yang konsisten dalam memperkirakan sebuah nilai.[2] Bias juga diartikan bobot yang tidak proporsional mendukung atau menentang ide atau hal yang biasanya dilakukan dengan cara berpikiran tertutup, merugikan, atau tidak adil. ...

Алексей Акимович Беспаликов Член Совета Федерации Федерального Собрания Российской Федерации — представитель от исполнительного органа государственной власти Новосибирской области 24 ноября 2010 года — 1 октября 2014 года Предшественник Анатолий Иванович Салтыков Пр�...

 

Danish actor For the Norwegian handball player and coach, see Harald Madsen (handballer). Harald Martin Bergmann MadsenMadsen in the 1930sBorn(1890-11-20)20 November 1890Silkeborg, DenmarkDied13 July 1949(1949-07-13) (aged 58)Usseroed, DenmarkOccupationActorYears active1917-1948 Fy og Bi in the magazine Se, 1947 Harald Martin Bergmann Madsen[1] (20 November 1890 – 13 July 1949) was a Danish film actor. He appeared in 51 films between 1917 and 1948. Harald Madsen was a ...

 

Westerbork Synthesis Radio TelescopeBagian dariEuropean VLBI Network LokasiHooghalen, Midden-Drenthe, Drenthe, BelandaKoordinat52°54′53″N 6°36′12″E / 52.91474°N 6.60334°E / 52.91474; 6.60334Koordinat: 52°54′53″N 6°36′12″E / 52.91474°N 6.60334°E / 52.91474; 6.60334 OrganisasiASTRON Model teleskopTeleskop radio Location of Westerbork Synthesis Radio Telescope Media terkait di Wikimedia Commons[suntin...

Disambiguazione – Se stai cercando altri significati, vedi Moneta (disambigua). Questa voce o sezione sull'argomento economia ha un'ottica geograficamente limitata. Motivo: Si riferisce in parte solo all'Italia, per di più senza dichiararlo Contribuisci ad ampliarla o proponi le modifiche in discussione. Se la voce è approfondita, valuta se sia preferibile renderla una voce secondaria, dipendente da una più generale. Segui i suggerimenti del progetto di riferimento. Questa voce o s...

 

Cet article est une ébauche concernant l’Ouzbékistan et le rugby à XV. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Ouzbékistan Données clés Entrée au Board NC Sélectionneur NC Données clés Coupe du monde   · Participations NC · Meilleur résultat NC modifier L'équipe d'Ouzbékistan de rugby à XV rassemble les meilleurs joueurs de rugby à XV de l'Ouzbékistan. Histoire Le rugby...

 

Questa voce sull'argomento calciatori olandesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Nathaniël WillNazionalità Paesi Bassi Altezza177 cm Peso70 kg Calcio RuoloDifensore Squadra Lelystad CarrieraSquadre di club1 2009-2010 Jong Ajax? (?)2010-2013 N.E.C.68 (1)2013-2017 De Graafschap97 (1)[1]2017 RoPS11 (1)2018-2020 Spakenburg37 (2)2020- Lelystad?...

Shinagawa品川区 Barrio especial BanderaEscudo ShinagawaLocalización de Shinagawa en Japón Mapa de ShinagawaCoordenadas 35°36′33″N 139°43′49″E / 35.609166666667, 139.73016666667Idioma oficial JaponésEntidad Barrio especial • País Japón • Región Kantō • Prefectura TokioSuperficie   • Total 22,77 km²Población (2008)   • Total 344,461 hab. • Densidad 15,740 hab./km²Huso horario Hora estándar de J...

 

Coppa Intercontinentale 1965 Competizione Coppa Intercontinentale Sport Calcio Edizione 6ª Organizzatore UEFA e CONMEBOL Date 8 e 15 settembre 1965 Partecipanti 2 Risultati Vincitore Inter(2º titolo) Secondo Independiente Il nerazzurro Peiró batte Santoro, aprendo le marcature nella finale d'andata di Milano. Cronologia della competizione 1964 1966 Manuale La Coppa Intercontinentale 1965 è stata la sesta edizione del trofeo riservato alle squadre vincitrici della Coppa dei Campioni e del...