Magnetocrystalline anisotropy

In physics, a ferromagnetic material is said to have magnetocrystalline anisotropy if it takes more energy to magnetize it in certain directions than in others. These directions are usually related to the principal axes of its crystal lattice. It is a special case of magnetic anisotropy. In other words, the excess energy required to magnetize a specimen in a particular direction over that required to magnetize it along the easy direction is called crystalline anisotropy energy.

Causes

The spin-orbit interaction is the primary source of magnetocrystalline anisotropy. It is basically the orbital motion of the electrons which couples with crystal electric field giving rise to the first order contribution to magnetocrystalline anisotropy. The second order arises due to the mutual interaction of the magnetic dipoles. This effect is weak compared to the exchange interaction and is difficult to compute from first principles, although some successful computations have been made.[1]

Practical relevance

Magnetocrystalline anisotropy has a great influence on industrial uses of ferromagnetic materials. Materials with high magnetic anisotropy usually have high coercivity, that is, they are hard to demagnetize. These are called "hard" ferromagnetic materials and are used to make permanent magnets. For example, the high anisotropy of rare-earth metals is mainly responsible for the strength of rare-earth magnets. During manufacture of magnets, a powerful magnetic field aligns the microcrystalline grains of the metal such that their "easy" axes of magnetization all point in the same direction, freezing a strong magnetic field into the material.

On the other hand, materials with low magnetic anisotropy usually have low coercivity, their magnetization is easy to change. These are called "soft" ferromagnets and are used to make magnetic cores for transformers and inductors. The small energy required to turn the direction of magnetization minimizes core losses, energy dissipated in the transformer core when the alternating current changes direction.

Thermodynamic theory

The magnetocrystalline anisotropy energy is generally represented as an expansion in powers of the direction cosines of the magnetization. The magnetization vector can be written M = Ms(α,β,γ), where Ms is the saturation magnetization. Because of time reversal symmetry, only even powers of the cosines are allowed.[2] The nonzero terms in the expansion depend on the crystal system (e.g., cubic or hexagonal).[2] The order of a term in the expansion is the sum of all the exponents of magnetization components, e.g., α β is second order.

Examples of easy and hard directions: Although easy directions often (not always [3]) coincide with crystallographic axes of symmetry, it is important to note that there is no way of predicting easy directions from crystal structure alone.[4]

Uniaxial anisotropy

Uniaxial anisotropy energy plotted for 2D case. The magnetization direction is constrained to vary on a circle and the energy takes different values with the minima indicated by the vectors in red.

More than one kind of crystal system has a single axis of high symmetry (threefold, fourfold or sixfold). The anisotropy of such crystals is called uniaxial anisotropy. If the z axis is taken to be the main symmetry axis of the crystal, the lowest order term in the energy is[5]

[6]

The ratio E/V is an energy density (energy per unit volume). This can also be represented in spherical polar coordinates with α = cos sin θ, β = sin sin θ, and γ = cos θ:

The parameter K1, often represented as Ku, has units of energy density and depends on composition and temperature.

The minima in this energy with respect to θ satisfy

If K1 > 0, the directions of lowest energy are the ± z directions. The z axis is called the easy axis. If K1 < 0, there is an easy plane perpendicular to the symmetry axis (the basal plane of the crystal).

Many models of magnetization represent the anisotropy as uniaxial and ignore higher order terms. However, if K1 < 0, the lowest energy term does not determine the direction of the easy axes within the basal plane. For this, higher-order terms are needed, and these depend on the crystal system (hexagonal, tetragonal or rhombohedral).[2]

Hexagonal system

A representation of an easy cone. All the minimum-energy directions (such as the arrow shown) lie on this cone.

In a hexagonal system the c axis is an axis of sixfold rotation symmetry. The energy density is, to fourth order,[7]

The uniaxial anisotropy is mainly determined by these first two terms. Depending on the values K1 and K2, there are four different kinds of anisotropy (isotropic, easy axis, easy plane and easy cone):[7]

  • K1 = K2 = 0: the ferromagnet is isotropic.
  • K1 > 0 and K2 > −K1: the c axis is an easy axis.
  • K1 > 0 and K2 < −K1: the basal plane is an easy plane.
  • K1 < 0 and K2 < −K1/2: the basal plane is an easy plane.
  • −2K2 < K1 < 0: the ferromagnet has an easy cone (see figure to right).

The basal plane anisotropy is determined by the third term, which is sixth-order. The easy directions are projected onto three axes in the basal plane.

Below are some room-temperature anisotropy constants for hexagonal ferromagnets. Since all the values of K1 and K2 are positive, these materials have an easy axis.

Room-temperature anisotropy constants ( × 104 J/m3 ).[8]
Structure
Co 45 15
αFe2O3 (hematite) 120[9]
BaO · 6Fe2O3 3
YCo5 550
MnBi 89 27

Higher order constants, in particular conditions, may lead to first order magnetization processes FOMP.

Tetragonal and rhombohedral systems

The energy density for a tetragonal crystal is[2]

.

Note that the K3 term, the one that determines the basal plane anisotropy, is fourth order (same as the K2 term). The definition of K3 may vary by a constant multiple between publications.

The energy density for a rhombohedral crystal is[2]

.

Cubic anisotropy

Energy surface for cubic anisotropy with K1 > 0. Both color saturation and distance from the origin increase with energy. The lowest energy (lightest blue) is arbitrarily set to zero.
Energy surface for cubic anisotropy with K1 < 0. Same conventions as for K1 > 0.

In a cubic crystal the lowest order terms in the energy are[10][2]

If the second term can be neglected, the easy axes are the ⟨100⟩ axes (i.e., the ± x, ± y, and ± z, directions) for K1 > 0 and the ⟨111⟩ directions for K1 < 0 (see images on right).

If K2 is not assumed to be zero, the easy axes depend on both K1 and K2. These are given in the table below, along with hard axes (directions of greatest energy) and intermediate axes (saddle points) in the energy). In energy surfaces like those on the right, the easy axes are analogous to valleys, the hard axes to peaks and the intermediate axes to mountain passes.

Easy axes for K1 > 0.[11][12][13]
Type of axis to to to
Easy ⟨100⟩ ⟨100⟩ ⟨111⟩
Medium ⟨110⟩ ⟨111⟩ ⟨100⟩
Hard ⟨111⟩ ⟨110⟩ ⟨110⟩
Easy axes for K1 < 0.[11][12][13]
Type of axis to to to
Easy ⟨111⟩ ⟨110⟩ ⟨110⟩
Medium ⟨110⟩ ⟨111⟩ ⟨100⟩
Hard ⟨100⟩ ⟨100⟩ ⟨111⟩

Below are some room-temperature anisotropy constants for cubic ferromagnets. The compounds involving Fe2O3 are ferrites, an important class of ferromagnets. In general the anisotropy parameters for cubic ferromagnets are higher than those for uniaxial ferromagnets. This is consistent with the fact that the lowest order term in the expression for cubic anisotropy is fourth order, while that for uniaxial anisotropy is second order.

Room-temperature anisotropy constants ( ×104 J/m3 )[11]
Structure
Fe 4.8 ±0.5
Ni −0.5 (-0.5)–(-0.2)[14][15]
FeO· Fe2O3 (magnetite) −1.1
MnO· Fe2O3 −0.3
NiFe2O3 −0.62
MgFe2O3 −0.25
CoFe2O3 20

Temperature dependence of anisotropy

The magnetocrystalline anisotropy parameters have a strong dependence on temperature. They generally decrease rapidly as the temperature approaches the Curie temperature, so the crystal becomes effectively isotropic.[11] Some materials also have an isotropic point at which K1 = 0. Magnetite (Fe3O4), a mineral of great importance to rock magnetism and paleomagnetism, has an isotropic point at 130 kelvin.[9]

Magnetite also has a phase transition at which the crystal symmetry changes from cubic (above) to monoclinic or possibly triclinic below. The temperature at which this occurs, called the Verwey temperature, is 120 Kelvin.[9]

Magnetostriction

The magnetocrystalline anisotropy parameters are generally defined for ferromagnets that are constrained to remain undeformed as the direction of magnetization changes. However, coupling between the magnetization and the lattice does result in deformation, an effect called magnetostriction. To keep the lattice from deforming, a stress must be applied. If the crystal is not under stress, magnetostriction alters the effective magnetocrystalline anisotropy. If a ferromagnet is single domain (uniformly magnetized), the effect is to change the magnetocrystalline anisotropy parameters.[16]

In practice, the correction is generally not large. In hexagonal crystals, there is no change in K1.[17] In cubic crystals, there is a small change, as in the table below.

Room-temperature anisotropy constants K1 (zero-strain) and K1 (zero-stress) ( × 104 J/m3 ).[17]
Structure
Fe 4.7 4.7
Ni −0.60 −0.59
FeO·Fe2O3 (magnetite) −1.10 −1.36

See also

Notes and references

  1. ^ Daalderop, Kelly & Schuurmans 1990
  2. ^ a b c d e f Landau, Lifshitz & Pitaevski 2004
  3. ^ Atzmony, U.; Dariel, M. P. (1976). "Nonmajor cubic symmetry axes of easy magnetization in rare-earth-iron Laves compounds". Phys. Rev. B. 13 (9): 4006–4014. Bibcode:1976PhRvB..13.4006A. doi:10.1103/PhysRevB.13.4006. S2CID 121478624.
  4. ^ Cullity, Bernard Dennis (1972). Introduction to Magnetic Materials. Addison-Wesley Publishing Company. p. 214.
  5. ^ An arbitrary constant term is ignored.
  6. ^ The lowest-order term in the energy can be written in more than one way because, by definition, α222 = 1.
  7. ^ a b Cullity & Graham 2008, pp. 202–203
  8. ^ Cullity & Graham 2008, p. 227
  9. ^ a b c Dunlop & Özdemir 1997
  10. ^ Cullity & Graham 2008, p. 201
  11. ^ a b c d Cullity & Graham 2008
  12. ^ a b Samad, Fabian; Hellwig, Olav (2023). "Determining the preferred directions of magnetisation in cubic crystals using symmetric polynomial inequalities". Emergent Scientist. 7: 1. doi:10.1051/emsci/2023002.
  13. ^ a b Krause, D. (1964). "Über die magnetische Anisotropieenergie kubischer Kristalle". Phys. Status Solidi B. 6 (1): 125–134. Bibcode:1964PSSBR...6..125K. doi:10.1002/pssb.19640060110. S2CID 121784080.
  14. ^ Lord, D. G.; Goddard, J. (1970). "Magnetic Anisotropy in F.C.C. Single Crystal Cobalt—Nickel Electrodeposited Films. I. Magnetocrystalline Anisotropy Constants from (110) and (001) Deposits". Physica Status Solidi B. 37 (2): 657–664. Bibcode:1970PSSBR..37..657L. doi:10.1002/pssb.19700370216.
  15. ^ Early measurements for nickel were highly inconsistent, with some reporting positive values for K1: Darby, M.; Isaac, E. (June 1974). "Magnetocrystalline anisotropy of ferro- and ferrimagnetics". IEEE Transactions on Magnetics. 10 (2): 259–304. Bibcode:1974ITM....10..259D. doi:10.1109/TMAG.1974.1058331.
  16. ^ Chikazumi 1997, chapter 12
  17. ^ a b Ye, Newell & Merrill 1994

Further reading

[1]

[2]

  1. ^ Samad, Fabian; Hellwig, Olav (2023). "Determining the preferred directions of magnetisation in cubic crystals using symmetric polynomial inequalities". Emergent Scientist. 7: 1. doi:10.1051/emsci/2023002.
  2. ^ Krause, D. (1964). "Über die magnetische Anisotropieenergie kubischer Kristalle". Phys. Status Solidi B. 6 (1): 125–134. Bibcode:1964PSSBR...6..125K. doi:10.1002/pssb.19640060110. S2CID 121784080.

Read other articles:

Katedral NanjingKatedral Perawan Maria Dikandung Tanpa Noda, NanjingHanzi: 圣母无染原罪始胎堂Katedral NanjingKoordinat: 32°02′27″N 118°46′42″E / 32.04083°N 118.77833°E / 32.04083; 118.77833Lokasi112 Jalan Shigu, NanjingNegaraTiongkokDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupan AgungKeuskupan Agung Nanjing Katedral Nanjing atau yang bernama resmi Katedral Santa Perawan Maria Dikandung Tanpa Nod...

 

 

Untuk pola warna, lihat polkadot. PolkadotTipeperangkat lunak dan mata uang kripto BerdasarkaSubstrate (en) Versi pertama2020 Versi stabil 1.0.0 (19 Juli 2023) Informasi pengembangPembuatWeb3 FoundationPengembangParity Technologies LTD.Sumber kode Kode sumberPranala Informasi tambahanSitus webhttps://polkadot.networkSubredditPolkadot Sunting di Wikidata • L • B • Bantuan penggunaan templat ini Polkadot adalah usulan pertukaran multi-rantai heterogen dan terjemahan arsitek...

 

 

25N-NBOMe Names Preferred IUPAC name 2-(2,5-Dimethoxy-4-nitrophenyl)-N-[(2-methoxyphenyl)methyl]ethan-1-amine Other names 2C-N-NBOMe, NBOMe-2C-N Identifiers CAS Number 1354632-03-3 3D model (JSmol) Interactive image ChemSpider 52085577 PubChem CID 118536028 UNII 0G7SSW2N0S Y CompTox Dashboard (EPA) DTXSID501014186 InChI InChI=1S/C18H22N2O5/c1-23-16-7-5-4-6-14(16)12-19-9-8-13-10-18(25-3)15(20(21)22)11-17(13)24-2/h4-7,10-11,19H,8-9,12H2,1-3H3Key: TXCKTIBHURMASQ-UHFFFAOYSA-N SMILES CO...

Kongregasi Misionaris Putra Hati Kudus Bunda Perawan MariaClaretianCongregatio Missionariorum Filiorum Immaculati Cordis Beatae Mariae VirginisSingkatanCMFTanggal pendirian16 Juli 1849PendiriSanto Antonius Maria KlaretTipeOrdo keagamaan Katolik (Lembaga Kehidupan Tahbisan)Kantor pusatVia del Sacro Cuore di Maria, 5, 00197 Roma, ItaliaSitus webclaret.org Klaresia, sebuah komunitas imam dan bruder Katolik Roma, didirikan oleh Santo Antonius Klaret pada 1849. Karya mereka sangat beragam dan terg...

 

 

Voce principale: Avezzano Calcio. Football Club AvezzanoStagione 1978-1979Sport calcio Squadra Avezzano Allenatore Feliciano Orazi Franco Panzieri Guido Liberati Presidente Ugo Graziani Francesco Fedele e Gino Lolli Serie C216º posto nel girone C. 1977-1978 1979-1980 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti il Football Club Avezzano nelle competizioni ufficiali della stagione 1978-1979. Stadio dei Marsi di Avezzano Indice 1 Rosa 1.1 Ros...

 

 

ロバート・デ・ニーロRobert De Niro 2011年のデ・ニーロ生年月日 (1943-08-17) 1943年8月17日(80歳)出生地 アメリカ合衆国・ニューヨーク州ニューヨーク市身長 177 cm職業 俳優、映画監督、映画プロデューサージャンル 映画、テレビドラマ活動期間 1963年 -配偶者 ダイアン・アボット(1976年 - 1988年)グレイス・ハイタワー(1997年 - )主な作品 『ミーン・ストリート』(1973年)...

35 mm photographic film format This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 135 film – news · newspapers · books · scholar · JSTOR (March 2014) (Learn how and when to remove this message) 135 film. The film is 35 mm (1.4 in) wide. Each image is 24×36 mm in the most common small film format...

 

 

Cargo ship built in Denmark in World War 2 Gotenland History Name 1942: Gotenland 1945: Hopeville 1967: Oinoussian Hope 1968: Esperanza Owner 1942: Kriegsmarine 1945: Skibs-A/S Steinstad 1957: Skibs-A/S Siljestad 1967: Argyros Cia SA Operator 1942: Norddeutscher Lloyd 1945: A. F. Klaveness & Co 1967: Panagiotis A Lemos & Co Ltd Port of registry 1942: 1945: Oslo 1967: Piraeus BuilderBurmeister & Wain, Copenhagen Laid down1940 CompletedNovember 1942 Identification 1945: call sign LL...

 

 

American film director, producer and screenwriter (born 1960) Richard LinklaterLinklater in 2015BornRichard Stuart Linklater (1960-07-30) July 30, 1960 (age 63)Houston, Texas, U.S.Occupation(s)Director, producer, writerYears active1985–present[1]Notable workBoyhood, Dazed and Confused, Before trilogy, School of Rock, Waking Life, SlackerSpouseChristina HarrisonChildren3, including LoreleiWebsitedetourfilm.com Richard Stuart Linklater (/ˈlɪŋkleɪtər/; born July 30, 1960...

Indigenous Maya people of Guatemala Kaqchikel (Cakchiquel)A Kaqchikel familyTotal population1,068,356[1]Regions with significant populations Guatemala (Sacatepéquez, Sololá) Mexico (Chiapas, Campeche)LanguagesKaqchikel, SpanishReligionCatholic, Evangelical, Maya religionRelated ethnic groupsK'iche', Tzutujil The Kaqchikel (also called Kachiquel[2]) are one of the Indigenous Maya peoples of the midwestern highlands of Guatemala and of southern Mexico. They constitut...

 

 

Dick SutherlandSutherland (tengah) dengan Mildred Davis dan Harold Lloyd (di air), A Sailor-Made Man (1921)LahirArchibald Thomas Johnson(1881-12-23)23 Desember 1881Benton, Kentucky, Amerika SerikatMeninggal3 Februari 1934(1934-02-03) (umur 52)Hollywood, California, Amerika SerikatPekerjaanPemeranTahun aktif1921-1932 Dick Sutherland (nama lahir Archibald Thomas Johnson, 23 Desember 1881 – 3 Februari 1934) adalah seorang pemeran film Amerika Serikat, yang banyak berka...

 

 

هرقل نصف إله هو كائن إلهي أو خارق في الميثولوجيا الكلاسيكية.[1][2][3] وقد استخدم هذا المصطلح في طرق مختلفة في أزمنة مختلفة، ويصف شخصية بلغت منزلة إلهية بعد الموت، أو إله أقل مرتبة، أو بشر من نسل إله وإنسان. كما وتتصف شخصية نصف إله بالخلوذ والأبدية. من أنصاف الآلهة: ج...

У Вікіпедії є статті про інші значення цього терміна: Ягорлик (значення). Ягорлик Ягорлик у селі Довжанка47°22′59″ пн. ш. 29°11′33″ сх. д. / 47.38310000002777400° пн. ш. 29.19270000002777721° сх. д. / 47.38310000002777400; 29.19270000002777721Витік на схід від смт Слобідки• координати ...

 

 

Abbasid-era library in Baghdad, modern-day Iraq This article is about the Abbasid library in Baghdad, Iraq. For the Fatimid library in Cairo, Egypt, see House of Knowledge. House of Wisdomبَيْت الْحِكْمَة‎Scholars at the Abbasid library (Maqamat al-Hariri)Illustration by Yahya ibn Mahmud al-Wasiti, 1237LocationBaghdad, Abbasid Caliphate (now Iraq)TypeLibraryEstablishedc. 8th century CEDissolved1258 (Mongol conquest) The House of Wisdom (Arabic: بَيْت الْحِ...

 

 

此條目没有列出任何参考或来源。 (2022年3月11日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 政治主題的一部分選舉/投票制度 多數/複數制 多數制 領先者當選 不可轉移單票制 有限投票制 全票制 總選票 多輪選舉制 两轮选举制 多輪絕對多數制 排序投票制 排序複選制 權變投票制(英语:Conti...

President of the Dominican Republic (1906–2002) In this Spanish name, the first or paternal surname is Balaguer and the second or maternal family name is Ricardo. The DoctorJoaquín BalaguerBalaguer in 1977President of the Dominican RepublicIn office16 August 1986 – 16 August 1996Vice PresidentCarlos Morales TroncosoJacinto Peynado GarrigosaPreceded bySalvador Jorge BlancoSucceeded byLeonel FernándezIn office1 July 1966 – 16 August 1978Vice PresidentFrancisco ...

 

 

This is an alphabetical listing of notable mosques in the United States (Arabic: Masjid, Spanish: Mezquita), including Islamic places of worship that do not qualify as traditional mosques. History of mosques in the United States Number of mosques per million residents in each U.S. state and the District of Columbia as of 2020 A mosque, also called masjid in Arabic, is defined as any place where Muslims pray facing Mecca, not necessarily a building. By that meaning, there were mosques in the ...

 

 

مقاطعة ودفورد     الإحداثيات 38°02′N 84°44′W / 38.04°N 84.74°W / 38.04; -84.74   [1] تاريخ التأسيس 2 نوفمبر 1788  تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى كنتاكي  العاصمة فرسايليس  خصائص جغرافية  المساحة 497 كيلومتر مربع  عدد السكان  ع...

John Francis Clauserジョン・フランシス・クラウザー 生誕 (1942-12-01) 1942年12月1日(81歳) アメリカ合衆国 カリフォルニア州パサデナ国籍 アメリカ合衆国研究機関 ローレンス・バークレー国立研究所ローレンス・リバモア国立研究所カリフォルニア大学バークレー校出身校 カリフォルニア工科大学コロンビア大学主な受賞歴 ウルフ賞物理学部門(2010)ノーベル物理学賞(2022)プ...

 

 

1513 painting by Palma Vecchio Assumption of the VirginItalian: Assunzione della VergineArtistPalma VecchioYearc. 1513MediumOil on panelDimensions191 cm × 137 cm (75 in × 54 in)LocationGallerie dell'Accademia, Venice The Assumption of the Virgin is an oil on panel painting by Palma Vecchio, created c. 1513, now in the Gallerie dell'Accademia in Venice.[1][2] It shows an episode recounted in the apocryphal gospels - the Virgin M...